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Abstract: Neutral monohexosylceramides (CMHs) globosides (globotriasyl ceramides), other glycosphingolipids (GSLs) 

and more complex structures such as glycoinositol-phospholipids(GIPLs) and glycosyl phosphatidylinositol (GPI) anchors 

have been described in several members of the trypanosomatid family. These highly bioactive molecules are not only 

components of biological structures but also participants in host-parasite interactions such as macrophage invasion, anti-

genic presentation and signal transduction. Glycolipid structures have been studied using mass spectrometry (MS).This 

review describes a wide range of glycoconjugates with unique and complex structures that are present in several trypano-

somatid species. Their structures are described in the context of their biological significance.  
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INTRODUCTION  

 Glycoconjugates have been studied as components of 
several members of the trypanosomatidae family. These cell-
surface molecules play important roles in parasite survival 
and infectivity. A wide range of glycoconjugates with differ-
ent and complex structures are present in several species. 
Among them, we found lipid- containing carbohydrates (gly-
colipids) such as glycosphingolipids (GSLs), glycoinositol-
phospholipids (GIPLs) and glycosylphosphatidyl inositol 
(GPI-APs) anchors [1].  

 Fig. (1) shows some of these glycoconjugates on a try-
panosomatid plasma membrane. 

 Glycosphingolipid structures have been characterized 
from non-pathogenic trypanosomatids such as Trypanosoma 
mega and a bat trypanosomatid, as well as Trypanosoma 
cruzi [2-4].  

 The etiologic agents of tropical and subtropical diseases 
such as leishmaniasis (Leishmania spp.), African sleeping 
sickness (Trypanosoma brucei) and Chagas disease (Try-
panosoma cruzi) are all members of the family trypanoso-
matidae and have been the target of extensive research. 
Many studies have focused on the unusually high levels of 
GPI-anchored molecules present in these organisms, which 
are thought to form a dense, homogeneous and protective 
coat on the parasite cell surface [5]. These molecules include 
the variant surface glycoprotein (VSG) in the bloodstream-
form of T. brucei [6], metalloprotease Gp63 (or leishma-
nolysin) in Leishmania [7] and (GIPLs) in Leishmania [5].  
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Each parasite stage is already known to have different glyco-
conjugates [8, 9]. The aim of this mini-review is to describe 
the bioactive molecules found in trypanosomatids and corre-
late them with their biological significance. 

1. GLYCOSPHINGOLIPIDS (GSLs) 

 GSLs are membrane components of plant, animal and 
microbial cells. They are amphiphatic molecules containing 
mono- or oligosaccharide groups that are glycosidically at-
tached to C-1 of an amino alcohol sphingosine. Complex 
sphingolipids have a fatty acid attached in an amide linkage 
(Fig. 2). The fatty acids vary in chain length, degree of un-
saturation (most are saturated), and presence or absence of a 
hydroxyl group.  

 GSLs have been implicated in many fundamental cellular 
processes including growth, differentiation and morphogene-
sis. GSLs modulate cell signaling by controlling the assem-
bly and specific activities of plasma membrane proteins. 
They are highly bioactive and are involved in many aspects 
of cell signaling such as cell-cell interaction, cell-substratum 
interaction and cell-pathogen interaction. GSLs also are in-
volved in the modulation of signal transduction, resulting in 
regulation of cell proliferation and differentiation [10, 11].  

 Using the carbohydrate moiety as a reference, GSLs can 
be divided into different classes including cerebrosides 
(GSLs containing mono- or oligosaccharide groups that are 
glycosidically attached to C-1 of the amino alcohol sphin-
gosine), sulfatides (sulfate esters of some cerebrosides), glo-
bosides (GSLs containing two or more monosaccharide 
units) and gangliosides (similar to globosides but also con-
taining sialic acid).  

 In eukaryotic organisms, there is a high diversity of GSL 
structures. Plants and fungi often contain glycosphingolipids 
with relatively simple carbohydrate structures, although clear 
differences in the structure of the ceramide backbone of 
these organisms are present [12]. Determination of GSL 
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Fig. (1). Membrane glycoconjugates from trypanosomatids. GP, glycoprotein; IMP, integral membrane protein; GSLs, glycosphingolipids; 

GPI-APs, GPI-anchored proteins; GIPL, glycoinositolphospholipids; and PLs, phospholipids. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Structure of a typical glycosphingolipid containing only one monosaccharide (monohexosylceramide) from mammalian cells. The 

glycolipids have a fatty acid attached in amide linkage to the sphingosine (d18:1) (forming ceramides). The monosaccharide (galactose or 

glucose) is attached glycosidically to C-1 of sphingosine.  

structures is greatly dependent on the use of mass spectrome-
try (MS), such as fast atom bombardment MS (FAB-MS), 
electrospray ionization (ESI-MS) and dissociation MS 
(ESIMS/CID-MS); 

1
H and 

13
C-Nuclear Magnetic Resonance 

(NMR) have also been used successfully. A combination of 
these techniques is usually sufficient for complete structural 
elucidation [12]. 

Trypanosoma cruzi  

 The major neutral glycosphingolipids from the T. cruzi Y 
strain were identified as ceramide mono- and dihexosides 
(CMH and CDH), and their structures were elucidated using 
a combination of column chromatography, HPTLC, and gas-
chromatography (GC) together with FAB-MS and 500 MHz

-1
 

H-NMR spectroscopy [3]. The molecular species of CMH 

contain glucose or galactose, sphingosine (d18:1) and fatty 
acyl groups that are mainly C-24 saturated, monounsaturated 
or 2-hydroxy fatty acids (Table 1). The different molecular 
species can be attributed to CMH molecules that differ only 
in the chain length of their hydroxy fatty acids. The ceramide 
dihexoside was identified as lactosylceramide with sphingos-
ine (d18:1) as the long chain base and 16:0, 18:0, 24:0 and 
24:1 fatty acids as the major components. No evidence of 
hydroxylated fatty acids was obtained by MS [3]. 

 Recently, ceramide species containing C23:0 and C25:0 
were also described among GIPLs from T. cruzi [13]. Gluco-
syl- and lactosylceramides were also isolated and their struc-
tures were characterized in another T. cruzi strain, Dm28c. 
[4] (Fig. 3). 
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Table 1. Relative Distribution of Fatty Acid Chain Length Among Ceramide Monohexoside Fractions CMH-COH and CMH-Cn 

from T. cruzi (Y Strain) as Calculated from the [M+H-60]
+
 Ions of the Per-O-acetylated Compounds. CMH-Cn, Ceramide 

Monohexosides from T.cruzi with -n Fatty Acids; CMH-COH, CMH with -hydroxy Fatty Acids from T.cruzi 

 

[M+H-60]+  (m/z) Chain length of n-fatty acid CMH-Cn (%) Chain length of -hydroxy acid CMH-COH (%) 

 850 16:0  37  -  - 

 906  -  -  16:1  13 

 934 22:0  24  -  - 

 962 24:0  39  -  - 

 990  -  - 22:0  13 

 1004  -  - 23:0  15 

 1006  -  - 24:1  13 

 1020  -  - 24:0  33 

 1034  -  - 25:0  13 

Based on the MS data, only sphingosine is present in the ceramide moiety. 

Table 2. Relative Distribution of Fatty Acid Lengths of the Ceramide Dihexoside Fraction of CDH from T. cruzi (Y Strain) as Cal-

culated from the [M+H-60]
+
 Ions of Per-O-acetylated Species 

[M+H-60]+ (m/z) Fatty acid chain length CDH (%) 

1138 16:0 36 

1166 18:0 35 

1222 22:0 15 

1250 24:0 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Main structures of glycosylceramides from clone Dm28c of T.cruzi (A) Glucosylceramide (CMH) and (B) Lactosylceramide (CDH).  

 The structure of the ceramide monohexoside was eluci-
dated by GC-MS, FAB-MS and 

1
H-NMR spectroscopy. Glu-

cose was the only sugar present, and GC-MS analysis of the 
methanolyzed and trimethylsilylated CMH revealed three 
main peaks corresponding to C22:0, C23:0 and C24:0 non-
hydroxylated fatty acids. Based on the FAB-MS spectrum 

and the analytical data for fatty acids, the major molecular 
species of long-chain base was sphingosine (d18:1), which 
was represented by an ion at mass to charge ratio (m/z) 264. 

 FAB-MS of the per-O-acetylated CDH fractions gave 
major molecular ions from [M+H-60]

+
 at m/z 1223, 1237 
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and 1251 (Table 2). The ceramide moiety of CDH was rep-
resented by peaks at m/z 646.6 (d18:1/22:0 +Ac), 660.6 
(d18:1/23:0 +Ac) and 674.6 (d18:1/24:0 + Ac). Ions at m/z 
619, 331 and 289 derived from the hexose-hexose group 
were detected (Fig. 4). The glycan sequence in CDH was 
confirmed by enzymatic degradation with -galactosidase 
[4]. 

 These data demonstrate a substantial diversity among T. 
cruzi glycosylceramides. Such differences may be associated 
with the different courses of Chagas disease observed with 
different T. cruzi clones [14]. 

 GSLs are emerging as attractive targets for antimicrobial 
therapy [15]. GLS-binding antibodies with potent antimicro-
bial action have been recently described [12]. It is necessary 
to characterize the determinants of antigenicity of these 
molecules, aiming at the identification of antimicrobial anti-
bodies with selective toxicity. Ceramide dihexoside isolated 
from clone Dm28c of T. cruzi was recognized by sera from 
T. cruzi-immunized rabbits to a much higher extent than the 
mono-glycosylated form. This result suggests that glycosyla-
tion is a determinant of antigenicity in T.cruzi GSL [4, 16]. 
Replacement of the ceramide moiety in this GSL by phos-
phatidylethanolamine resulted in a decrease of serological 
reactivity, indicating that intramolecular interactions be-
tween sugar and ceramide moieties are important for anti-
genicity. A previously characterized CMH from the Y clone 
of T.cruzi was strongly recognized by immunized sera. 
These results indicate that fatty acid hydroxylation and ce-
ramide glycosylation influence the serological reactivity of 
T.cruzi GSL [4,16]. 

 Few studies are currently found in literature concerning 
the biological role of these molecules in T. cruzi. Cossy-Isasi 
and collaborators [17] reported that parasite epimastigotes 
treated with gangliosides from bovine brain presented an 

altered lipid order that inhibited membrane enzymes and 
caused morphological alterations. Electron-lucent vacuoles 
opposite the cytostome, multilamellar bodies and dilated 
mitochondrion cristae, in addition to a disorganized kineto-
plast and altered heterochromatin structure, were found in 
epimastigote forms [18, 19]. Trypomastigotes suffered a loss 
of cytoplasmic material and organelles when the ganglioside 
GM1 was present in the culture medium. Inoculation of mur-
ine models with the ganglioside GM1 has shown a strikingly 
nonlinear effect leading to a strong decrease in parasite load 
at low doses but reverting to a load increase at high doses. 
GM1-treated mice survived and recovered with normal fre-
quency. Cardiomyocyte destruction concomitant with the 
disease was also significantly reduced by a moderate appli-
cation of GM1 [18, 19]. 

1.2. Trypanosoma mega 

 A glycosphingolipid fraction from Trypanosoma mega 
was isolated and was further purified on a silicic acid col-
umn. Preparative thin-layer chromatography was used for 
final purification. The carbohydrate components of the gly-
colipid were fucose and galactose in approximately equimo-
lar amounts. The neutral glycolipid of T. mega had a sphin-
gosine base composition that consisted of sphingosine (d 
18:1) and traces of dihydrosphingosine (d 18:0). Fatty acids 
forming amide groups with the sphingosine bases were ana-
lyzed by GC-MS and were a mixture of non-hydroxy and -
hydroxy fatty acids. Normal C16:0, C18:0 and 2-hydroxy 
C18:0 were the predominant fatty acids [2]. 

1.3. Leishmania (L) amazonensis 

 Glycosphingolipids were characterized in amastigote and 
promastigote forms of Leishmania (L) amazonensis [20].The 
structure of the main GSL present in the amastigote forms of 
this parasite was characterized as Galp  (1 3) Galp  (1 3) 
Galp  (1 4) Glcp  (1 1) Cer and is referred to as a -Gal-
globotriasylceramide. The role of this glycolipid in macro-
phage infectivity was confirmed using Mabs directed to this 
molecule. A putative receptor/lectin of macrophages with a 
molecular mass of 30kDa for L.amazonensis GSL was sug-
gested [21]. 

 The specificity of the L.amazonensis interaction could be 
confirmed by the absence of binding of L.chagasii amas-
tigotes, which do not express the -Gal-globotriasylceramide 
glycoconjugate High concentrations of GSLs as well as ster-
ols were detected in amastigote lipid rafts. Membrane do-
mains were resistant to treatment with non-ionic detergents 
at 4 °C. Disruption of the membrane microdomains with 
methyl- -cyclodextrin significantly reduced parasite infec-
tivity suggesting a role of GSLs in macrophage invasion by 
species of Leishmania [19]. 

 Other glycolipids such as IPC and GIPLs, along with 
sterols, were present in L.amazonensis promastigotes and 
preferentially distributed in membrane rafts [1]. 

2. GLYCOINOSITOLPHOSPHOLIPIDS (GIPLs) AND 
LIPOPHOSPHOGLYCANS (LPGs) 

 The cell surfaces of all trypanosomatids are rich in glyco-
sylphosphatidylinositol (GPI)-anchored proteins and -
glycans such as lipophosphoglycans (LPG) and other glyco-
conjugates, which are the free glycoinositol phospholipids 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). FAB-MS analysis of the lactosylceramide (LacCer) of 

clone Dm28c of T. cruzi. 
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(GIPLs) that form protective surface coats and mediate es-
sential host-parasite interactions [22-25]. 

 GIPLs may be classified into three types: i) Type-1 
GIPLs contain an -Man residue linked (1 6) to the Man 
residue of the common motif (Man 1-4GlcN 1-6myo-
inositol-1-HPO4-) and are abundant in T. cruzi [26], 
Leishmania donovani and Phytomonas [28, 29], ii) Type-2 
GIPLs are defined by the presence of an -Man residue 
linked 1 3 to the Man residue of the common motif and 
have been described in Leishmania spp. [30, 31], iii) Type-3, 
the hybrid-type GIPLs, contain the branched structure 
Man 1 3(Man 1 6) Man 1 4GlcN 1-6myo-inositol-1-
HPO4-lipid and are found in some Leishmania species [28] 
and in Herpetomonas samuelpessoai [23]. The addition of 
oligosaccharide side chains and phosphorylated substituents, 
as well as distinct types of glycosidic linkages and lipid an-
chors, are responsible for the diversity of GIPL structures 
found in trypanosomatids [22,32]. 

2.1. Trypanosoma cruzi  

 The first free GIPL, called lipopeptideophosphoglycan, 
was that from the epimastigote form of Trypanosoma cruzi. 
In the parasite these GIPLs form a dense glycocalyx (ap-
proximately 10

7
 GIPLs

 
/cell) over the entire surface of the 

trypanosome [33].This was the first study to provide a pre-
cise quantitative analysis of GIPLs and mucins on the sur-
face of both epimastigotes and trypomastigotes. Highly puri-
fied GIPLs from the T. cruzi Y strain were analyzed by nu-
clear magnetic resonance spectroscopy (NMR), mass spec-
trometry and chemical degradation [26, 27]. 

 Variations in glycan structure and lipid composition were 
detected in T. cruzi GIPLs purified from different strains. 
The main GIPL species from the T. cruzi Y strain has the 
structure Galf 1 3Man 1 2(Galf 1 3)Man 1 2Man 1 

6Man 1-4(2-AEP-6)GlcN 1 6myo-inositol-1-HPO4-
lignoceroylsphinganine [34]. However, GIPLs are mostly 
mixtures of beta-galactofuranose ( -Galf)-, ethanolamine 
phosphate (EtNP)- and 2-aminoethylphosphonate (AEP)-
containing series 1 GIPLs (~structure Galf 1 3Man 1 2 
(~AEP/EtNP-6)Man 1 2Man 1  6Man 1 4(AEP-6) 
GlcN 1 6-myo-inositol-P-ceramide) and series 2 GIPLs 
(~structure Galf 1 3Man 1 2(~Galf 1 3)Man 1  
2Man 1-6Man 1 4(AEP-6)GlcN 1 6-myo -inositol-P- 
ceramide and Galf 1 3Man 1 2Man 1-6Man 1 4 
(AEP- 6)GlcN 1 6-myo-inositol-P-ceramide) [26, 27, 35, 
36].  

 T. cruzi GIPLs are bioactive molecules and several bio-
logical effects have been described. First, GIPLs induce 
blockade of CD4

+ 
and CD8

+ 
T-cell activation in vitro by anti-

CD3, superantigen or T. cruzi antigen. Furthermore, cell cy-
cle blockade in T cells as well as reduced IL-2 secretion 
were observed. The suppressive effects of GIPLs on T cells 
are due to their ceramide moiety [34, 37]. Second, on the 
contrary, GIPLs were demonstrated to have a co-stimulatory 
effect on mouse T-cell hybridomas, enhancing IL-2 produc-
tion induced by suboptimal doses of mitogenic stimuli [38]. 
Third, the purified GIPL ceramide moiety induced Ca

2+ 
mo-

bilization, [34, 38]. Fourth, GIPLs are involved in parasite 
attachment to the midgut of the insect vector. The admini-
stration of 0.5 μM of GIPLs inhibits up to 90% parasite in-
fection in Rhodnius prolixus [39]. 

2.2. Leishmania spp.  

 In Leishmania , procyclic promastigotes, unlike amastig-
otes, express abundant quantities of a complex (protein-free) 
lipophosphoglycan (LPG) on their surface [22, 24] and the 
GPI anchored-metalloprotease (gp63) [40, 41]. Both glyco-
conjugates are thought to protect the promastigotes from 
hydrolytic enzymes in the sandfly gut, whereas LPG facili-
tates attachment to the insect gut epithelium. Transformation 
from non-infective dividing procyclics to infective non-
dividing metacyclics can involve changes to the LPG struc-
ture [31, 42-44]. In addition, Leishmania species contain 
GIPLs that form protective surface coats that have also been 
implicated in virulence and have been shown to mediate es-
sential host-parasite interactions. GIPLs are necessary for the 
viability of both the insect and mammalian (amastigote) 
stages of the life cycle [45]. 

2.2.a. LPG 

 The LPG is the most abundant macromolecule on the 
surface of Leishmania promastigotes (approximately 6x10

6 

copies per cell) during their development in the gut of the 
sandfly vector. Important roles have been described for the 
LPG coat including protection against the hydrolytic pepti-
dase associated with bloodmeal digestion [46], binding of 
the parasite to the midgut wall [47], and, in some steps, it is 
required for the establishment of macrophage infections and 
for survival in the insect vector through complementation 
and oxidant resistance [24,25].  

 In all Leishmania species, the GPI anchor of LPG is 
composed of a 1-O-alkyl-2-lysophosphatidylinositol lipid 
anchor and a heptasaccharide core. A long phosphoglycan 
polymer composed of 15–30 [Gal 1,4Man 1-PO4] repeating 
units (substituted with other sugars in some species) is at-
tached to the heptasaccharide core and is terminated by a 
capping oligosaccharide [25, 28, 42, 48]. The chains of the 
phosphoglycan are assembled in the Golgi apparatus and are 
modified with monosaccharide or glycan side chains and 
terminal capping oligosaccharides [20, 49, 50]. The attach-
ment of the L. major promastigote to the midgut of P. pa-
patasi is mediated by the terminally exposed galactose resi-
dues of the LPG, and the microvillar-associated proteins act 
as ligands for the parasite LPG [51-53]. Alterations to the 
length of the phosphoglycan chain, as well as changes in the 
nature of the side chains, occur during promastigote devel-
opment in the sandfly midgut. In L. major the transition from 
procyclic to metacyclic promastigotes is also associated with 
the capping of galactose side chains with arabinose residues 
[24, 44]. These changes result in an increase in the thickness 
of the surface coat and confer additional resistance to com-
plement-mediated lysis, and they are also thought to be im-
portant in regulating the attachment of promastigotes to 
epithelial cells in the sandfly midgut [24, 43, 54]. 

2.2.b. GIPLs 

 In the Leishmania genus, GIPLs are necessary for the 
viability of both the insect and mammalian (amastigote) 
stages of the life cycle [32, 45]. Several types of structures 
have been found. For instance, in Leishmania donovani, 
type-1 GIPLs contain a Man residue linked 1-6 to the Man 
residue of Man 1 4GlcN 1 -6myo-inositol-1-HPO4-lipid 
[29 ]. This structure is present in Leishmania donovani [29]. 
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The type-2 GIPLs are defined by the presence of a Man 
residue linked 1 3 to the Man residue of the common motif 
and have been described in L. major [30], L. mexicana [31], 
L. tropica and L.aethiopica [55] and L. adleri [56]. The hy-
brid-type GIPLs contain the branched structure Man 1  
3(Mana1  6) Man  4GlcNa1 6myo - inositol-1- HPO4-
lipid and are found in L. mexicana and L.donovani [25,28], 
L. tropica and L. aethiopica [55]. 

2.3. Trypanosoma dionisii  

 Trypanosoma (Schizotrypanum) dionisii is a bat trypano-
somatid that is non-pathogenic for humans. It originates 
from the Europe and Latin America and is related to Try-
panosoma cruzi. Recently, studies with mammalian cells 
showed that T. dionisii is highly infective in vitro, particu-
larly when the infection process occurs without serum. In 
this case, the invasion is affected by agents known to inter-
fere with the T. cruzi invasion process [57].  

 The GIPLs of T. dioinisii were purified by reversed-
phase and normal-phase liquid chromatography and analyzed 
by negative-ion mode electrospray-mass spectrometry (ESI-
MS). The phosphatidylinositol moieties were released by 
nitrous acid deamination and identified as ceramide- and 
alkylacylglycerol-containing species. The GIPLs were based 
on the same Man 1-2Man 1-2Man 1-6Man 1-4(NH2-
CH2CH2-HPO3-)GlcN-PI core with single terminal Galf resi-
due substitutions either on the terminal non-reducing Man or 
on the second Man residue from the inositol and with either 
EtNP or AEP on the third Man residue distant from the 
myo-inositol residue [58]. 

2.4. Phytomonas spp. 

 Phytomonas spp. are trypanosomatid parasites of plants. 
Their GIPLs were analyzed by chemical and enzymatic 
modifications, composition and methylation analyses, elec-
trospray mass spectrometry and micro-sequencing after 
HNO2 deamination and NaBH4 reduction. The water-soluble 
head group of the second GIPL structure (see below) was 
also analyzed by 

1
H NMR spectroscopy [29]. 

 The GIPLs were analyzed in Phytomonas spp isolated 
from the rubber plant Euphorbia characias and they repre-
sent the first detailed characterization of surface molecules 
from this protozoa. Four GIPLs were detected with phos-
phatidylinositol moieties containing the fully saturated alky-
lacylglycerol lipids 1-O-hexadecyl-2-O-palmitoylglycerol 
and 1-O-hexadecyl- 2-01-O-hexadecyl-2-O-palmitoylgly-
cerol and 1-O-hexadecyl--stearoylglycerol.These GIPLs are 
most similar to GIPL A of T.cruzi epimastigotes [35]. 

 The structures of the GIPLs are: i) Man 1 2Man 1  
6Man 1 4GlcNa1 -6PI, ii) Glc 1 2(NH2- CH2CH2 - 
HPO4) Man 1 2Man 1  6Man c1  4GlcN 1 -6PI, 
iii) Glc 1 2(NH2CH2CH2-HPO

4
-)Man 1 2Man 1 6 

Man 1 -4(NH2-CH2CH2-HPO4-)GlcN 1 6PI and iv) 
Glc 1 2Glc 1 2(NH2CH2- CH2-HPO4-)Man 1 2Man 1 

6Man 1-4(NH2CH2CH2-HPO4-)- GlcN 1 6PI. [29, 
32].The presence of one and two  Glc residues are novel 
structural features for GIPLs. Unlike some Leishmania and 
Endotrypanum GIPLs [22] , Phytomonas GIPLs do not con-
tain Gal residues.This finding may be significant since Phy-
tomonas spp lives in the latex of Euphorbia characias, 

which contains a bivalent Gal-specific lectin , that might 
agglutinate the parasite [59]. 

 The functions of these cell-surface GIPLs in trypanoso-
matid parasites remains obscure. However their abundance 
suggests that they may provide a protective role due to a 
dense negatively charged glycocalyx close to the surface of 
the plasma membrane, through which other macromolecules 
project [22]. 

3. GLYCOSYLPHOSPHATIDYLINOSITOL (GPI)-
ANCHORED PROTEINS 

 The glycosylphosphatidylinositol (GPI) anchor is a gly-
colipid structure that is added post-translationally to the C-
terminus of many eukaryotic proteins. This modification 
anchors the attached protein in the outer leaflet of the cell 
membrane [32, 60-62]. The GPI anchor is a complex struc-
ture comprising a phosphoethanolamine linker, a glycan core 
and a phospholipid tail (Fig. 5). 

 Proteins containing a GPI anchor are functionally diverse 
and play important roles in endocytosis, signal transduction, 
prion disease pathogenesis, complement regulation, anti-
genic presentation and the pathobiology of trypanosomal 
parasites [63-65]. In pathogenic protozoan parasites, the Tri-
tryp group (e.g., Trypanosoma cruzi, Trypanosoma brucei, 
Leishmania major) molecules containing a GPI anchor may 
extensively coat the plasma membrane and are involved in 
host-parasite interaction processes, such as modulation and 
evasion of host immune responses.  

3.1. Trypanosoma cruzi 

 T. cruzi GPI-anchored proteins are found in all evolutive 
forms and are encoded by thousands of members of 
multigene families, such as trans-sialidase (TS)/gp85 glyco-
protein, mucin, mucin-associated surface proteins (MASP) 
and metalloproteinase gp63 [13]. Some of them, such as the 
TS/gp85 and mucins, have been shown to be very important 
for the infectivity of the parasite and for escaping the host 
immune response [8, 66-70]. Furthermore, GPI anchors from 
T. cruzi are pro-inflammatory molecules and are critical in 
modulation of the host immune response against the parasite 
[9, 71]. Taking into consideration these important functions, 
GPI- anchored proteins and GPI anchors themselves seem to 
be possible targets for new therapies against Chagas disease. 

3.1.a. Mucins (TcMUC) 

 Mucins are hydrophilic glycoproteins that bear a dense 
array of O-linked oligosaccharides with side chains contain-
ing Gal and GlcNAc (about 60% carbohydrate by weight) 
and are anchored to the plasma membrane via a glycosyl-
phosphatidylinositol (GPI) moiety. Metacyclic and cell-
derived trypomastigote mucin-like molecules are sialylated 
by a parasite membrane-located trans-sialidase (TS) [72].  

 They were first described by Alves and Colli [73] as gly-
coproteins A, B, and C in non-infective epimastigotes. The 
core polypeptides of these glycoproteins are only 50–200 
amino acids in length and their sequences are rich in Ser and 
Thr residues [67, 74-78]. The surface of Trypanosoma cruzi 
at different stages is covered by mucins. Acting at the inter-
face between the parasite and both the vector and the in-
fected host, these molecules provide protection against the 
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vector and/or vertebrate-host-derived defense mechanisms 
and ensure the targeting and invasion of specific cells or tis-
sues [8, 78]. 

 T. cruzi mucins contain a complex family of mucin-like 
genes termed TcMUC. The groups of repetitive and non-
repetitive genes were designated TcMUC I and TcMUC II, 
respectively. The majority of the mucin molecules present on 
the surface of the cell-derived trypomastigotes belong to the 
TcMUC II group [8]. In fact, amastigote mucins are proba-
bly from the TcMUC I family/group. A second mucin gene 
family was identified that, despite having similar flanking 
regions to those of the TcMUC gene products, encodes pro-
teins with their own diverse and remarkably short central 
regions [79, 80]. This gene family was therefore termed 
TcSMUG, for T. cruzi small mucin-like gene family. 
TcSMUG comprises 70–80 genes that were originally di-
vided in two groups (S for Small and L for Large) according 
to the size of their encoded mRNAs. Recently, the group S 
gene products have been identified as the major 35–50 kDa 
mucins expressed during the epimastigote stage [13].  

 Mucins can initially be divided into two major types: 
those present in the insect stages and those present in the 
mammalian stages. Mucins from both major insect-derived 
stages (epimastigotes and metacyclic trypomastigotes) run 
on SDS-PAGE as double or triple bands in the range of 35–
50 kDa and have almost identical amino acid and carbohy-
drate compositions. The only structural difference is that, in 
the mucins isolated from epimastigotes, an alkylacylglycerol 
residue is found in the GPI anchor whereas in the metacyclic 
trypomastigote, it is replaced by a ceramide [8]. In the epi-
mastigote and metacyclic mucins, the GPI glycan core is 
mainly composed of the linear structure Man1 2Man1  
2Man1 6Man1 4GlcN [67, 81]. In the metacyclic trypo-
mastigote forms, mucins may facilitate parasite development 
and growth in the insect vector by allowing trypomastigotes 
to survive the activities of digestive enzymes. In metacyclic 
trypomastigotes, which successfully initiate infection of the 
mammalian gastrointestinal tract, the peptidase-resistant 

mucin may confer the ability to survive at extremely low pH 
and protection from proteolytic enzymes present in gastric 
secretions [82]. 

 Mucins from cell-derived trypomastigotes (tGPI-mucins) 
appeared on SDS-PAGE as a smear spanning a wide range 
of molecular masses (60–200 kDa). They shared the sialic 
acid-containing epitope Ssp-3, which is crucial for mammal-
ian-cell attachment and invasion and which might be in-
volved in diverting the complement cascade [74]. Mass spec-
trometric analysis of tGPI-mucins showed the presence of 
their GPI, oligosaccharide and peptide regions [83, 84]. The 
oligosaccharides were O-glycosidically linked mainly to Thr 
residues in the peptide backbone via N-acetylglucosaminyl 
units [77]. The attached lipid region is an alkylacylglycerol 
containing mainly unsaturated fatty acids at the sn-2 position 
of the glycerol moiety. The O-linked oligosaccharides are 
highly immunogenic to humans, resulting in the production 
of high-levels of trypanolytic anti-Gal antibodies [77]. In 
cell-derived trypomastigotes GPI glycan cores can be larger, 
containing a branch of Gal residues up to eight units in 
length [84], substituting a linear structure of Man1  
2Man1 2Man1 6Man1 4GlcN [81]. The established and 
putative functions of the mucin components are as follows: i) 
variable region – immune evasion and adhesion; ii) core re-
gion – the main O-glycosylation scaffold and immunogenic-
ity; iii) glycans – protection, adhesion and immunogenicity; 
iv) glycosylphosphatidylinositol (GPI) anchor – anchorage 
and immunomodulation (Fig. 6; Table 3). 

 The trypomastigote (strain Y obtained from LLCMK2 cell 
culture) GPI structure was found to contain additional galac-
tose residues and unsaturated acids in the sn-2 position of the 
alkylacyl-glycerolipid component. This feature is essential 
for the extreme efficiency of the trypomastigote GPI anchor 
in the induction of macrophage proinflammatory cytokines 
[84]. The TcMUC may also play an important protective role 
in the vertebrate forms and, in this case, an effective sialyla-
tion of the parasite seems to be critical. When the mucins are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Structure of the GPI anchor of Trypanosoma brucei bloodstream forms VSG. Based on Ferguson and collaborators [29].  
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Fig. (6). Mucins in major Trypanosoma cruzi developmental forms in the insect vector and host cell (based on [8]). 

 

Table 3. Some Functions of Trypanosoma cruzi Mucins 

Stages / vector/ host Functions Ref. 

Insect 

Epimastigote 
Protection against peptidases [67, 86] 

Adhesion and invasion of mammalian host cells [69, 87, 88] 

Ca2+ mobilization in the host cell [89] 
Insect 

Metacyclic trypomastigote 

Protection against peptidases [82] 

Cell attachment and invasion [74] 

Induction of the synthesis of proinflammatory cytokines (TNF- , IL-12) and 

nitric oxide (NO) by IFN- -primed murine macrophages 
[67, 83, 84, 89, 90] 

Impair the B-cell 

Responses 
[85, 91] 

Mammal 

Blood trypomastigote 

Protect against complement-independent lysis [67, 77] 

Mammal 

Extracellular amastigotes 
Impairment of B-cell responses [85, 91-93] 

 

sialylated, each parasite acquires about 1 10
7 

sialic acid 
residues, resulting in a strong negative charge on the surface. 
This negatively charged coat is thought to provide protection 
against complement-independent lysis induced by human 
anti-galactosyl antibodies [67, 68]. The heterogeneity of the 
mucin core polypeptides expressed in mammal –dwelling 
stages of T.cruzi could have an additional protective effect 
against the host immune system. Antigenic cross-reactivity 
displayed by HV (hypervariable )–peptides might be one of 
the mechanism leading to the poor response directly towards 

them. A possible explanation could be the co-expression of 
multiple antigenically-related TcMUC I variants on the para-
site surface impairing or delaying the maturation and/or lead-
ing to anergy of cross reactive B anf T lymphocytes [85].  

3.1.b. Trans-Sialidase (TS)  

 Trans-sialidase (TS) is a glycoprotein that transfers sialic 
acid residues from host sialoglycoconjugates to parasite 
mucins but cannot use the CMP-sialic acid as a donor. TS 
activity has been postulated to enable T. cruzi to circumvent 
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its lack of de novo synthesis of sialic acid and is crucial for 
the viability and propagation of the parasite [72, 74, 94-96, 
33, 101]. These molecules are present on the T. cruzi surface 
coat albeit in much lower numbers than mucins. Together 
with mucins they are essential for the infectivity of the para-
site and its escape from the host-immune response [9, 71, 97-
100]. Endotrypanum spp. (parasites of rain forest tree sloths) 
can also incorporate host-derived sialic acid into molecules 
of their own surface membrane [102]. 

 The ts gene family comprises at least 1,400 members 
[103], which can be classified into three groups. [66] Two of 
these groups (TS and TS I) are expressed by trypomastigotes 
(non-replicative metacyclic forms in insect vectors and mam-
malian invasive bloodstream forms). Both of them are 
anchored by glycosylphosphatidylinositol (GPI) to the sur-
face membrane. They have two main regions: an N-terminal 
catalytic region and a C-terminal extension with tandem re-
peats of 12 amino acids (SAPA repeats). Trypomastigotes 
derived from infected mammalian cells express and release 
20 times more TS activity than axenic metacyclic trypomas-
tigotes, which correspond to the infective forms derived 
from the insect vector [98]. After cleavage of its glycosyl-
phosphatidylinositol (GPI) anchor by the action of a phos-
phatidylinositol-phospholipase C (PI-PLC), TSs are shed 
into the bloodstream to up-regulate the early infection in 
phagocytic and non-phagocytic cells and to exert other bio-
logical effects on several cell types [66, 104]. 

 The lipid moiety of the glycoinositolphospholipid that 
anchors the trans-sialidase to the membrane was character-
ized and two different kinds of lipids are linked through a 
phosphate bridge to a glycoinositol structure: hexadecylglyc-
erol (Lyso-1-O-hexadecylglycerol) and ceramide (N-
palmitoyl-sphinganine) in a 1:3 ratio [105].  

3.1.c. NETNES 

 MacRae et al. [106] described the occurrence of NET-
NES, a complex glycoprotein with only 13 amino acids with 
the sequence AQENETNESGSID, in T. cruzi. The glycopro-
tein (NETNES) is a 13-amino acid peptide with up to five 
post-translational modifications, including one or two N-
linked glycans, two phosphate-linked mannose chains and a 
GPI anchor. The N-glycans are predominantly Man 1  
6(Man 1 3) Man 1 6(Man 1 3)Man 1 4GlcNAc 1 

4GlcNAc 1-Asn; the phosphate-linked glycans are a mix-
ture of (Man 1- 2)O-3Man1-P-Ser; and the GPI anchor has 
the structure Man 1-(ethanolamine phosphate)Man 1-
2Man 1  6Man 1-4(2-aminoethylphosphonate-6)GlcN 1 

6-myo-inositol-1-P-3(sn-1-O-(C16:0) alkyl-2-O-(C16:0) 
acylglycerol). Four putative NETNES genes were found in 
the T. cruzi genome data base [106].  

3.2. GPI-Anchored Proteins in Other Trypanosomatids 

 In trypanosomatids, other well characterized GPI-
anchored molecules include the metallopeptidases, GP63 in 
Leshmania spp and VSG (variant surface glycoprotein) in 
Trypanosome brucei. Gp63 homologues have been found in 
all other trypanosomatids

 
studied to date including heterox-

enous members of Trypanosoma
 
cruzi [107], T. brucei, [108-

111], phytoparasitic Phytomonas spp. and numerous
 
monox-

enous species [112 , 113 ]. They very likely perform roles
 

different from those in Leishmania spp. [114]. 

3.2.1. Trypanosoma brucei VSG 

 The African trypanosome Trypanosoma brucei is cov-
ered with a dense layer of variant surface glycoproteins 
(VSG), which protect it from lysis by host complement via 
the alternative pathway in the mammalian bloodstream [6, 
109]. The parasite evades the immune system by periodically 
replacing the existing VSG coat with a different one. This 
phenomenon is known as antigenic variation, and it allows 
the trypanosome to maintain a chronic infection [115]. When 
bloodstream-form parasites are ingested by the tsetse fly, 
they differentiate into the procyclic form in the insect midgut 
and colonize it. Replacement of VSG with procyclin is a 
hallmark of the transformation of bloodstream stage trypano-
somes into the procyclic form. The procyclic trypanosomes 
express a different cell surface coat that includes about 3 x 
10

6
 procyclin glycoproteins and about 1 x 10

6 
poly-N-

acetyllactosamine containing free GPIs [116-119]. Pro-
cyclins are glycosylphosphatidylinositol (GPI)-anchored 
proteins with either five or six pentapeptide repeats (GPEET 
procyclin) or up to 30 glutamic acid-proline dipeptide re-
peats (EP procyclin) that confer a rod-like structure to the 
protein [120-122]. Procyclin anchors are complex and are 
characterized by the presence of large poly disperse 
branched N-acetyllactosamine (Gal 1-4GlcNAc)- and lacto-
N-biose (Gal 1-3GlcNAc)-containing side-chains that can 
be capped with 2-3-linked sialic acid residues [100 ]. The 
branched side-chains of the anchor form a dense glycocalyx 
that contributes to the protective function of the coat against 
digestive enzymes in the fly midgut [123]. The lipid moiety 
of gp63 is composed of alkylacylglycerol [22, 124]. 

 GPEET and EP procyclins contain similar GPI mem-
brane anchors. These are based on the ubiquitous ethanola-
mine-P-6Man 1-2Man 1- 6Man 1-4GlcN 1-6PI core: the 
PI lipid has a 2-O-acyl-myo-inositol-1-P-sn-2-lyso-1-O-
acylglycerol structure [120-122].  

3.2.2. Leishmania spp. gp63 

 Leishmania parasites are coated by a characteristic gly-
cocalyx of molecular components that play a critical role in 
the initial contact between the parasite and its host environ-
ment. The gp63 from Leishmania spp, also referred to as a 
promastigote surface peptidase (PSP), leishmanolysin and 
major surface peptidase (MSP), is a metallopeptidase related 
protein associated with virulence and pathogenicity in this 
trypanosomatid [7, 125, 126].The enzyme corresponds to the 
most abundant surface glycoprotein in promastigotes and is 
anchored via a glycosylphosphatidylinositol (GPI) anchor 
[127]. Gp63 plays a crucial role in complement fixation and 
processing, which protect Leishmania in mammalian hosts 
[126 , 128]. Other studies have demonstrated that gp63 de-
fends the parasite against antimicrobial peptides such as de-
fensins and pexiganans [129]. The high catalytic activity of 
gp63 at mammalian body temperature favors the dissemina-
tion of the parasite as it digests constituents of the extracellu-
lar matrix of the host such as collagen type IV, fibronectin 
and laminin [130,131].  

 Several species of Leishmania spp. release proteolytically 
active gp63 into the extracellular medium presumably facili-
tating the propagation of the parasite [131,132]. 
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 In addition, fragments from gp63-processed fibronectin 
can protect parasites within macrophages, because they at-
tenuate production of reactive oxygen intermediates and fa-
vor amastigote proliferation [133]. gp63 has also been sug-
gested to maximize promastigote binding, to participate in 
internalization in macrophages and to promote complement-
dependent adhesion [134]. Moreover coating polystyrene 
surfaces with gp63 enhances the in vitro spreading of fibro-
blasts [135]. 

 The expression of specific gp63 genes in the intracellular 
amastigote form implies an intra-host cell function for this 
peptidase. Curiously, the identification of the myristoylated 
alanine-rich C kinase substrate related protein (MRP), a cy-
tosolic protein associated with the actin network of macro-
phages, as a substrate of gp63 reinforces the potential of this 
enzyme to modulate host cell activities within the intracellu-
lar space [134].  

 Gp63 has been recently reported to cleave multiple intra-
cellular proteins and to participate actively in p38 mitogen-
activated protein kinase inactivation. A rearrangement of the 
actin cytoskeleton and marked modification of the profile of 
protein tyrosine phosphorylation in fibroblasts infected with 
Leishmania major has been described. Correspondingly, 
exposure to L. major resulted in degradation of the phos-
phorylated adaptor protein p130Cas and the protein-tyrosine 
phosphatase-PEST [134, 136, 137].  

 In addition, a recent study by Gomes and collaborators 
[138] reported that gp63 is the key Leishmania-virulence 
factor that modulates macrophage protein tyrosine phospha-
tases (PTPs) and revealed an essential role for PTP1B in the 
progression of cutaneous leishmaniasis in infected mice. The 
mechanism underlying protein tyrosine phosphatase (PTP) 
modulation involves the proteolytic activity of the Leishma-
nia surface protease gp63. Furthermore, the authors reported 
a mechanism whereby Leishmania gp63 accesses the macro-
phage intracellular medium in part by a lipid raft-dependent 
mechanism, allowing a direct interaction with host protein 
substrates. The internalization of gp63, a key Leishmania 
virulence factor, into host macrophages is a strategy that the 
parasite uses to interact and survive within its host [138]. 

PERSPECTIVES 

 A huge number of glycosphingolipid structures (GSLs) 
have been identified in mammalian cells. These cell-surface 
molecules participate in cell physiology and play important 
roles in cell recognition and in the modulation of function of 
receptors, etc. In trypanosomatids, glycolipid analysis is un-
dergoing rapid expansion. Glycosphingolipids (GSLs) have 
been characterized in T. cruzi, Leishmania spp. and some 
non-pathogenic trypanosomatids. Cell surface glycolip-
ids/glycoproteins that form essential surface coats for sur-
vival of parasites in their various hosts were also identified. 
Many of these glycoconjugates are attached via glycosyl-
phosphatidylinositol (GPI) anchors. However, the function 
of some of these molecules has remained largely unknown. 
A combination of isolation and separation technologies, as 
well as the use of mass spectrometry, for glycolipid struc-
tural characterization is required to unravel functional as-
pects of these cell surface molecules and to gain a better un-
derstanding of their role in infectious diseases. Considerable 

advances have recently been made in fields such as liquid-
chromatography- Mass spectrometry (LC-MS) of glycolipids 
from mammalian cells [139], GPI-anchored proteomics of 
Plamodium falciparum [140], GPIomics of T.cruzi [13] and 
glycolipid arrays to study antitoxic malaria response [141]. 
The combination of these sensitive and powerful techniques 
has allowed us to increase our structural and functional 
knowkedge of a wide variety of glycoconjugates an other 
macromolecules expressed by different protozoa. 
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