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Abstract: Protozoan parasites cause disease in humans worldwide, and many fall into the genera Trypanosoma and 

Leishmania; these parasites are responsible for African trypanosomiasis, Chagas disease and the different forms of 

Leishmaniasis. Strategies for the development of new drugs against these protozoans have been based on their cell biol-

ogy and biochemistry complemented by the use of electron microscopy. Trypanosoma and Leishmania have special orga-

nelles that are involved in metabolic pathways, which are very distinct from those in mammalian cells; these organelles 

are potential drug targets. Scanning and transmission electron microscopy can identify not only the target organelles but 

also alterations to the cell surface and ultrastructural changes that characterize distinct forms of programmed cell death.  
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1. INTRODUCTION 

 Parasitic protozoans of the genera Trypanosoma and 
Leishmania infect millions of people around the world. The 
diseases (African sleeping sickness, Chagas disease and 
leishmaniasis) caused by these parasites are in the group of 
13 neglected tropical diseases classified by the World Health 
Organization. All of them occur in areas of extreme poverty 
and are forgotten by the government, while chemotherapy in 
patients is not economically attractive to pharmaceutical 
companies. Other factors that make this situation even worse 
are the lack of effective vaccines, the use of old, toxic drugs 
with variable efficacy and parasite resistance, the parenteral 
administration and the length of treatment [1-3]. 

 Despite the lack of interest of different governments in 
eradicating these diseases, the trypanosomatids (even those 
not pathogenic to mammals) are the primary focus of various 
research groups around the world as important models for 
studying certain aspects of basic eukaryotic cell biology. 
Ultrastructural, physiological, biochemical and molecular 
approaches have shown that trypanosomatids (like other 
protozoan parasites) present special organelles, different 
metabolic pathways and special classes of enzymes. These 
features can be targeted for the development of new specific 
chemotherapeutic agents, including those isolated from natu-
ral compounds that can minimize the toxic effects on the 
host [3, 4-7]. 

 In this review we will discuss how electron microscopy 
can help to identify the cellular locations of molecular tar-
gets of several drugs in different developmental stages of 
Trypanosoma brucei, T. cruzi and Leishmania spp. We will  
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also describe in detail the effects of drugs on the ultrastruc-
ture of the parasites. 

2. ULTRASTRUCTURAL ASPECTS OF DRUG-
TREATED PARASITES 

 Scanning and transmission electron microscopy have 

been frequently used in the study of drug-treated parasites. 

With the scanning electron microscope (SEM), changes in 

cell shape (shrinking, swelling, twisting), loss of the flagel-

lum and cell membrane rupture can be observed. With the 

transmission electron microscope (TEM), the fine structure 

of the cell membranes and the different organelles can be 

observed (Fig. 1). Changes in composition of the organelles 

can be analyzed by cytochemical techniques, X-ray micro-

analysis or electron spectroscopy with loss of energy [8]. A 

brief explanation of the normal morphology of the parasites 

and the mechanism of action of the different classes of drugs 
will be presented. 

2.1. Mitochondria 

 Trypanosomatids have only one highly ramified mito-

chondrion distributed throughout the protozoan body as re-

vealed by observations of thick serial sections and of whole 

cells with high-voltage electron microscopy [8]. The mito-

chondrion is present in all developmental forms of the dif-

ferent trypanosmatids, and significant changes in the mor-

phology of the organelle were observed in African Trypano-

somes and in Herpetomonas samuelpessoai depending on 

the metabolic activity of the parasites. The morphological 

differences observed included changes in the relative volume 

of the mitochondrion in relation to the whole cell, the pres-

ence of cristae and the expression of mitochondrial enzymes. 

Although no differences in mitochondrial structure were 

observed among the developmental stages of T. cruzi and 

Leishmania, differences in molecular composition cannot be 

ruled out and could be important to define new molecular 
targets. 
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 The most frequent effect of different chemotherapeutic 
agents on trypanosomatid mitochondria is swelling of the 
organelle, the intensity of which varies according to the type 
and concentration of the drug and the time of incubation [9, 
10]. 

 Cationic drugs, such as crystal violet, which are used to 
prevent transfusion-associated Chagas disease and aromatic 
diamidines were the first drugs to be used in chemotherapy 
against pathogenic trypanosomatids [11-15]. The effect of 
crystal violet on T. cruzi is due to enhancement of produc-
tion of reactive oxygen species (ROS) that inhibit mitochon-
drial respiration and cause its swelling, which is more in-
tense in trypomastigotes [14].  

 Aromatic diamidines (such as pentamidine) have been 
used with success for more than 60 years in the therapy and 
prophylaxis of African trypanosomiasis and antimony-
resistant visceral leishmaniasis [16, 17]. They have been 
described as DNA binders but also inhibit multiple classes of 
enzymes such as proteases, topoisomerases, polymerases, 
and others [15]. More recently, new diamidine-related ana-
logues were developed that present improved anti-parasitic 
activity against T. cruzi and Leishmania [18, 19]. In T. cruzi, 
some of the new compounds (classified as reversed 
amidines) presented a high level of activity against amastig-
otes and trypomastigotes both in vivo and in vitro [18-26]. 
Ultrastructural analysis showed that the different aromatic 
diamines displayed similar effects in T. brucei, T cruzi and 
Leishmania, characterized by the presence of swollen mito-
chondria presenting low electron-density structures, frag-
mentation of the membrane and crista and mitochondrial 
disruption [12, 13, 18, 20, 23, 24, 27-32]. 

 T. cruzi and Leishmania mitochondria are altered when 
the parasites are incubated in the presence of sterol biosyn-
thesis inhibitors (SBIs). Sterols are constituents of cellular 
membranes that are essential for their normal structure and 
function. The success of SBIs in the treatment of Chagas 
disease and leishmaniasis is mainly due to a particular aspect 
of sterol biosynthesis in these parasites: unlike mammalian 
cells and similar to fungi, some members of the Trypanoso-
matidae family synthesize a special class of sterols (i.e., 
ergosterol and other 24-methyl sterols) instead of choles-
terol. Ergosterol biosynthesis depends on the presence of a 
specific enzyme,  

24(25)
sterol methyltransferase (SMT), 

which is not found in mammalian cells, and the use of its 
specific inhibitors has potential as an effective chemotherapy 
[9]. Several drugs that interfere with sterol biosynthesis were 
used in studies with T. cruzi, T. brucei and Leishmania. 
These include statins, which act on the mevalonate pathway 
by inhibiting HMG-CoA reductase [33]; biphosphonates, 
which interfere with the isoprenoid pathway in the step cata-
lyzed by farnesyl diphosphate synthase (FDS) [34]; 
zaragozic acid and quinuclidines, which are inhibitors of 
squalene synthase (SQS) [35]; allylamides such as terbi-
nafine, which are inhibitors of squalene epoxidase [33]; az-
oles such as ketoconazole, fluconazole, itraconazole, vori-
conazol and pozoconazole, which inhibit C14 -demetilase; 
and azasterols, which inhibit SMT (Figs. 2A, C, D, H). 

 Morphological changes observed in the mitochondria of 
trypanosomatids can be explained by the presence of ergos-
terol in their membranes [36]. Ketoconazole produces an 

intense swelling of the mitochondrion, which may occupy up 
to 80% of the cell volume in T. cruzi with loss of inner 
membrane organization and matrix contents [37]. The com-
bination of ketoconazole and terbinafine, in addition to in-
ducing swelling, also caused the formation of paracrystalline 
arrays within the matrix of the Leishmania mitochondrion 
[37, 38]. SQS inhibitors produce mitochondrial swelling, 
separation of the outer and inner membranes and the pres-
ence of myelin-like figures and concentric membranes in the 
mitochondrial matrix [39-42] (Fig. 2D). The same effects 
were observed after treatment of T. cruzi and Leishmania 
with SMT inhibitors [43-46] (Fig. 2A). No alterations in 
mitochondrion structure have been described in T. cruzi after 
incubation in the presence of miconazole or econazole [47]. 

 Lysophospholipid analogues (LPA) are a class of com-
pounds that have been developed as anticancer agents. Their 
mechanism of action is based on their ability to insert into 
the membrane lipid bilayer and to change properties such as 
permeability, fluidity and signal transduction. LPA also 
interfere with the synthesis, breakdown and modification of 
membrane lipids [48]. More recently, these compounds were 
also tested against Leishmania and T. cruzi [49]. Miltefosine, 
edelfosine and ilmofosine caused swelling of Leishmania 
mitochondria and the presence of concentric membranes in 
the mitochondrial matrix [50]. No alterations were observed 
when T. cruzi was treated only with edelfosine; however, 
combined treatment with LPA analogues plus ketoconazole 
induced mitochondrial swelling [51, 52]. 

 Lapachol and -lapachone are naphtoquinones isolated 
from Tabebuia spp. trees that show activity against viruses, 
tumoral lineages and pathogenic microorganisms [53]. The 
mechanism of action of these compounds involves the gen-
eration of free radicals, which promote mitochondrial dys-
function. The effect of naphtoquinones and their naph-
thoimidazole derivatives on mitochondrion structure are 
drastic, with an intense swelling and the presence of intra-
mitochondrial vesicles [54-58] (Figs. 2B, E). 

 The polyamine biosynthetic pathway has been shown to 
be an effective target for treatment against diseases caused 
by protozoan parasites. In trypanosomatids, the inhibition of 
polyamine synthesis impairs the synthesis of trypanotione, 
which is essential for protection of the parasite against reac-
tive oxygen species produced by the host [59]. Interference 
in the synthesis of polyamines with eflornithine or DFMO 
(difluoromethylornithine), a selective irreversible inhibitor of 
ornithine decarboxylase (ODC), induces changes in the dif-
ferentiation process in T. b. gambiense. However, it was not 
effective against Leishmania or T. cruzi due to differences in 
the gene and an inability to produce significant amounts of 
putrescine, respectively [60-63]. Use of the putrescine ana-
logue 1,4-diamino-2-butanone (DAB) caused inhibition of 
the proliferation of Leishmania and T. cruzi and severe dam-
age to the mitochondrion characterized by swelling, fenestra-
tion and the presence of few cristae [64-68].  

 Alternative treatments have been introduced into the 
chemotherapy of parasitic diseases, and many studies based 
on the use of synthetic compounds, plant extracts, natural 
products and venoms have been published. The biological 
activity of natural products is mainly associated with the 
presence of compounds such as flavonoids, aromatic acids, 
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peptides and others. Although many studies have been pub-
lished on T. cruzi, T. brucei and Leishmania, few have char-
acterized the effects of these products on the ultrastructure of 
the parasites. Mitochondrial swelling and the presence of 
concentric membrane structures in its matrix were observed 
after incubation of Leishmania and T. cruzi with any of the 
following: linalool-rich essential oil of Croton cajucara [69], 
usnic acid from the lichen Cladonia substellata [70], extract 
of the marine sponge Plakortis angulospiculatus [71], extract 
of the seeds of Pterodon pubescens with geranylgeraniol 
(GG-OH) being the most active fraction [72]), propolis [73], 
taxol isolated from Taxus brevifolia [74], dinitroaniline her-
bicides [75], -carbolines [76], chalcones from Piper adun-
cum [77], or neolignan from leaves of Piper regnellii [78]. 

2.2. Kinetoplast 

 The kinetoplast is a fibrous network of the mitochondrial 
DNA (kDNA) of the protozoa Trypanosomatidae and Bo-
donidae. The kDNA, which represents about 30% of the total 
cellular DNA, may be dispersed or concentrated in a special-
ized region of the mitochondrion near the basal body, from 
which the flagellum emerges [79]. The kinetoplast shape and 
its localization relative to the nucleus vary according the 
developmental stage of the different trypanosomatids. Two 
main forms are observed in T. cruzi, T. brucei and 
Leishmania: a compact rod- or bar-shaped structure observed 
in epimastigotes, promastigotes and amastigotes and a round 
form with a more disperse array of the kDNA filaments, 
which is found in trypomastigote forms. The kDNA is com-
posed of two circular types of DNA, maxicircles (small in 
number), which encode rRNAs and mitochondrial proteins, 
and thousands of minicircles, which encode guide RNAs that 
modify the maxicircle transcripts in a process known as 
RNA editing. According to Motta, maxicircles and minicir-
cles are connected in a special catenated network array that 
resembles the chain mail of medieval armor [80]. Kineto-
plast DNA minicircles have extensive closely-spaced phased 

AT sequences that yield curved double-helical structures and 
provide potential cellular targets for diamidines that have AT 
sequence binding specificity [81]. 

 The main alteration observed in the kinetoplast as an ef-
fect of the different drugs cited above is the disorganization 
of the kDNA network. There are different grades of disorga-
nization such as: a) looser organization of the DNA fila-
ments in the kDNA network; b) fragmentation of the kDNA, 
forming many clusters of electron-dense structures inside the 
mitochondrion; and c) compaction and multiple kDNAs. 

 Looser kDNA organization is observed when parasites 
are incubated with naphtoquinones and naphthoimidazoles 
[55-58] (Fig. 2E). Sometimes, the disorganization of the 
kDNA network, which has mainly been observed in 
trypomastigotes, seems to be the result of the severe swelling 
of the mitochondrion and the loss of the inner membrane. In 
contrast, aromatic diamidines [18, 20-23], natural and syn-
thetic -carbolines [76], topoisomerase inhibitors [80, 82, 
83], and DAB [68] cause a drastic effect: the destruction or 
fragmentation of the kDNA network in promastigotes and 
amastigotes of Leishmania and in trypomastigotes of T. 
cruzi. These effects were not observed in the kinetoplasts of 
epimastigote forms of T. cruzi. It is important to note that the 
looser kDNA aspect observed in pathogenic trypanosomatids 
after chemotherapy is not similar to the constitutive looser 
arrangement observed in endosymbiont-bearing trypanos-
matids, such as Blastocrithidia culicis, Crithidia deanei and 
Bodo spp. [80]. 

 Compaction of the kDNA filaments and the presence of 
multiple kinetoplasts were obtained after treatment of T. 
cruzi epimastigotes with piperine, which is an alkaloid of the 
Piper species. In some parasites, more than one individual-
ized kinetoplast can be observed, mimicking the effects of 
cytoskeleton inhibitors. In other parasites, however, up to 
three kDNA bars can be seen inside the same mitochondrion 
[84] (Fig. 2J). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Ultrathin sections showing untreated parasites presenting typical morphologies. (A) An L. amazonensis promastigote. (B-C) A T. 

cruzi epimastigote and a trypomastigote, respectively. N, nucleus; K, kinetoplast; M, mitochondrion; F, flagellum; R, reservosome. Bars: 1 

m. (A) Courtesy of J. C. Rodrigues. (B) Image from T. Souto-Padrón. (C) Image reproduced with permission from Ref. [58] © (2009) El-

sevier.  
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 No structural changes in the kDNA network of T. cruzi or 
Leishmania were described in the presence of LPA ana-
logues or SBIs [37, 39-42, 44-46, 50, 52]. 

2.3. Nucleus 

 The trypanosomatid nucleus presents a typical nuclear 
membrane with pores, condensed chromatin of varied den-
sity dispersed throughout the nuclear matrix up to the nu-
clear periphery. The nuclear envelope remains intact during 
the entire division process, with the appearance of intranu-
clear microtubules, chromatin dispersion and initiated forma-
tion of of dense plates, the number of which varies according 
to the trypanosomatid species [8]. 

 Some ultrastructural effects observed in the nucleus in 
the presence of different drugs indicate which death pathway 
the protozoan is undergoing. Different compounds may in-
duce different types of programmed cell death (PCD), in-
cluding apoptosis (type I PCD), autophagic cell death (type 
II PCD) and programmed necrosis (type III PCD) [10, 57, 
58]. 

 Aromatic diamidines and related analogues are DNA 
minor groove-binding ligands at AT sequences, and they 
exhibit strong antiparasitic activity [17]. Furamidine (DB75), 
its N-phenyl-substituted analogue (DB569) [18], and re-
versed [22, 23] and aromatic diamidines [26, 85] induce se-
vere alterations in nuclear morphology. After DB75 and 
DB569 treatment, T. cruzi trypomastigotes presented charac-
teristics of type I PCD [20, 21]. 

 Treatment of L. chagasi promastigotes with ER-119884, 
an SQS inhibitor, resulted in altered nuclear chromatin orga-
nization with some alterations in the nuclear envelope [42].  

 One of the most remarkable ultrastructural effects ob-
served in T. cruzi treated with naphthofuranquinones is 
strong nuclear envelope swelling [57, 58]. Similar effects 
were seen in L. chagasi promastigotes treated with telocino-
bufagin, a steroid isolated from Rhinella jimi parotoid 
macrogland secretions [86], and in T. cruzi forms treated 
with Ocimum basilicum essential oil [87] or L-leucine 
methyl ester (Leu-OMe) [88], where the condensed nuclear 
material became separated from the nuclear membrane with 
leakage of its content. 

 Treatment with different DNA topoisomerase inhibitors 
causes morphological alterations to the parasites' nuclei. 
Characteristics like nuclear envelope distension and chroma-
tin condensation were observed in T. cruzi epimastigotes 
after incubation with bacterial DNA topoisomerase type II 
[89]. Recently, the use of aspartyl peptidase inhibitors (PIs) 
has been demonstrated to exert a direct effect on Leishmania 
[90, 91]. L. amazonensis promastigotes treated with lopi-
navir, an HIV PI, presented condensed chromatin close to 
the nuclear envelope, a feature suggestive of apoptotic death 
[91]. 

 T. cruzi trypomastigotes treated with suramin exhibited 
an altered nuclear division pattern and frequently presented 
irregular or multiple nuclei [92]. Vinblastin-resistant L. ama-
zonensis also presented dysfunctional cytokinesis, in which 
the resistant promastigotes showed multiple nuclei [93]. This 
characteristic was found in parasites treated with the squa-
lene synthase inhibitors BPQ-OH, ER-119884 and E5700; 

promastigotes were frequently multinucleate (Fig. 2F) with 
unusual chromatin condensation [40, 41]. L. amazonensis 
amastigotes treated with edelfosine also presented abnormal 
numbers of nuclei [50].  

2.4. The Cell Surface  

 The cell surface of trypanosomatids, as observed by 
TEM, is composed of three different components: the cell 
coat (or glycocalyx), the cell membrane and the sub-
pellicular microtubule layer. The cell coat is in direct contact 
with the extracellular medium and is composed of oligosac-
charides associated with membrane lipids and proteins. The 
use of freeze-fracture and freeze-etching with TEM has 
shown that the cell membrane of trypanosomatids presents 
domains characterized not only by a distinct chemical com-
position, but also by association with the sub-pellicular 
microtubules. The first and largest domain is composed of 
the membrane lining the cell body. The second and the third 
are the flagellar membrane and the flagellar pocket mem-
brane, respectively [94]. 

 Different drugs have different effects on the cell body 
and the flagellar membranes (Figs. 2I). Aromatic diamidines 
[26] and reversed diamidines [22, 23] cause detachment of 
the plasma membrane in areas where sub-pellicular micro-
tubules are not observed. The presence of blebs budding 
from the cell body membrane and from the flagellar mem-
branes are observed in epimastigotes of T. cruzi and promas-
tigotes of Leishmania amazonensis after treatment with SMT 
[39, 46] and SQS inhibitors [41], respectively. Rupture of the 
flagellar membrane was also observed in promastigotes of 
Leishmania chagasi incubated in the presence of BPQ-OH, 
an SQS inhibitor [42]. 

 Synthetic naphtoquinones caused the formation of blebs 
in the plasma and flagellar membranes of T. cruzi epimastig-
otes [58]. Naphthoimidazoles derived from -lapachone 
showed a preferential effect on trypomastigotes in which 
bleb formation was observed throughout the cell body and 
flagellar membranes. Blebs associated with the cell body 
membrane did not present any sub-pellicular microtubules 
[57]. 

 Lysophospholipid analogues caused the formation of 
blebs in L. amazonensis and T. cruzi, and the effects were 
more evident when edelfosine, miltefosine and ilmofosine 
were combined with ketoconazole [50-52] (Fig. 2F). 

 Plasma membrane disruption was described after treat-
ment of T. cruzi and T. brucei with antimicrobial peptides 
such as defensins and cathelicidins, respectively [95, 96], 
and in Leishmania after incubation with cecropin A-melittin 
peptides and with the essential oil of Croton cajucara [69, 
97]. 

 The last kind of cell surface change observed after treat-
ment of trypanosmatids with different drugs is alterations in 
the amount and/or localization of surface molecules. Do-
campo et al. showed that treatment of T. cruzi with micona-
zole and econazole caused enhanced response of the parasite 
to the lectins WGA (wheat germ agglutinin) and PHA (phy-
tohemagglutinin) [47]. Treatment of T. cruzi with suramin, a 
symmetrical polysulfonated derivative of urea used in the 
prophylactic treatment of human trypanosomiasis in Africa, 
caused increased activity of a Mg

2+
ecto-ATPase and the 
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FRA antigen and redistribution of negative surface charges. 
Alterations in extracellular components in the region of ad-
hesion between the cell body and the flagellum and an in-
crease in the adhesion of epimastigotes to resident macro-
phages were also observed [92, 98, 99] (Fig. 2L).  

2.5. Cytoskeleton 

 Trypanosomatids present a continuous layer of micro-
tubules immediately below the cell membrane, named the 
sub-pellicular microtubule layer. They are distributed 
throughout the protozoan body, with the exception of the 
flagellar pocket. The number of microtubules varies in dif-
ferent regions of the body of the parasite, but they are regu-
larly spaced and connected by filaments to each other, to the 
inner face of the plasma membrane and to cytoplasmic orga-
nelles, such as the endoplasmic reticulum. One of the charac-
teristics of the sub-pellicular microtubules is their high pro-
portion of acetylated and/or polyglutamylated tubulins, 
which make them very stable [100]. Although actin and ac-
tin-binding proteins have been characterized in trypanoso-
matids, in T. cruzi they do not seem to be associated with 
sub-pellicular microtubules, as observed in Leishmania 
[101]. 

 No damage to sub-pellicular microtubules was observed 
after treatment of T. cruzi and Leishmania with taxol, colchi-
cine, vinblastine, trifuraline and ansamitocin P3, piperine or 
suramin. However, changes in the shape of the parasites, the 
presence of multiple flagellae, aberrant cell types with 
multiple kinetoplasts and absence of a nucleus were ob-
served; these changes are probably due to incomplete differ-
entiation and cytokinesis [74, 75, 84, 92, 102, 103]. Disorga-
nization of the sub-pellicular microtubule layer was only 
observed in amastigotes of T. cruzi incubated in the presence 
of reversed amidines [22, 23]. 

2.6. Endoplasmic Reticulum and Golgi Complex 

 The endoplasmic reticulum (ER) and the Golgi complex 
(GC) in trypanosomatids have the same basic structure as 
that observed in all eukaryotic cells. The localization of the 
GC may vary according to the developmental form analyzed, 
but in all cases the CG remains near the flagellar pocket. 
Different classes of drugs affect the physiology of the ER-
Golgi system, resulting in ultrastructural changes.  

 Sterol biosynthesis inhibitors have pronounced effects on 
the ER and GC [41]. Treatment with terbinafine and differ-
ent azole derivatives caused modifications in ER-GC struc-
tures, which were characterized by the presence of large 
multivesicular bodies and autophagic structures [37, 38]. The 
inhibition of squalene synthase (SQS) by different inhibitors, 
such as BPQ-OH, ER-119884 and E5700, caused disorgani-
zation and fragmentation of Golgi complex cisternae, the 
appearance of myelin-like figures in the cytoplasm and an 
increase in the number of autophagosomal structures and 
multivesicular bodies characteristic of autophagy [39-42] 
(Fig. 2G). 

 Another class of enzyme inhibitor that has been exten-
sively tested against T. cruzi is the cysteine protease inhibi-
tors (CPI) [104-106]. They showed remarkable effects on 
GC structure in T. cruzi epimastigotes and intracellular 
amastigotes, which presented an increase in size and in the 

number of cisternae (from 5-7 to up to 16) in addition to the 
presence of dilated vesicles.  

 Epimastigotes and trypomastigotes treated with protein 
kinase (PK) and phosphatidylinositol-3 kinase inhibitors, 
such as genistein, staurosporine and wortmannin, also pre-
sented autophagosomal structures that were characterized by 
ER profiles surrounding several organelles [107].  

 Swelling of the ER-Golgi system is a common effect in 
T. cruzi trypomastigotes treated with reversed amidines [22, 
23] and DAB [66]. Vinblastine treatment also caused 
Leishmania ER cisternae to protrude outward and to contact 
the plasma membrane [93]. 

 Natural products like plant-derived drugs, essential oils 
and animal venoms have remarkable effects on protozoa. 
Proanthocyanidin (an ethanolic extract from the Kola acumi-
nata plant) seems to drastically increase the T. brucei rough 
ER content and the Golgi apparatus, which present up to 
seven to eight cristae [108]. In addition to inducing ER pro-
files surrounding cytoplasmic membrane structures, -
lapachone derivatives also induced remarkable Golgi alter-
ations, like disruption and enlargement of the trans-Golgi 
network cisternae [55, 56]. Similarly, GG-OH treatment also 
caused effects on T. cruzi such as ER profiles surrounding 
organelles and myelin-like figures [72], suggesting an auto-
phagic death pathway in response to both compounds. Dila-
tion of the Golgi complex cisternae is also one of the effects 
of Brazilian green propolis on T. cruzi epimastigotes [109]. 

2.7. Endocytic/ Exocytic Related Organelles 

 The survival of trypanosomatids in distinct environments 
requires exogenous molecules that are internalized by fluid-
phase and receptor-mediated endocytosis [110-113]. The 
endocytic pathway in trypanosomatids presents a singular 
architecture, in which the intracellular itinerary and delivery 
of internalized molecules vary significantly according to the 
developmental form analyzed [114, 115]. In trypomastigote 
forms of T. brucei, the endocytic/exocytic apparati are re-
stricted to the posterior region of the cell between the flagel-
lar pocket and the nucleus. However, in epimastigotes of T. 
cruzi and promastigotes of Leishmania, molecules that enter 
the cytostome or are internalized from the flagellar pocket 
pass through a network of tubules and vesicles extending 
from the anterior to the posterior end of the parasite [112, 
116-118]. The nature and the morphological aspect of the 
compartments of the endocytic/exocytic pathway in trypano-
somatids vary according the species analyzed. In African 
trypanosomes, the compartments are similar to those de-
scribed in mammals, including the presence of lysosomes. 
Leishmania and T. cruzi, however, present different com-
partments that are potential drug targets. 

 Aromatic diamidines, such as pentamidine, caused re-
markable changes in the flagellar pocket of amastigotes from 
L. tropica [12] and trypomastigotes of T. rhodesiense [119]. 
The flagellar pockets were frequently dilated and filled with 
double membrane-bound bodies that budded from the flagel-
lar pocket membrane. The same phenomenon was also ob-
served in promastigotes of L. amazonensis after incubation 
in the presence of azasterol and squalene synthase inhibitors, 
suggesting alterations in the secretory pathway [41, 44]. 
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Fig. (2). Morphological alterations of parasites after different drug treatments. (A) An L. amazonensis promastigote treated with an SMT 

inhibitor for 96 h displaying a swollen mitochondrion and kinetoplast, altered nuclear chromatin distribution and presence of RE profiles 

(thick arrow). (B) Trypomastigote forms treated with naphthofuranquinone presenting mitochondrial swelling with intra-mitochondrial vesi-

cle formation (thick arrows), increased cytoplasmic vacuoles (V), and strong nuclear envelope dilation (thin arrows). (C) L. amazonensis 

promastigotes showing intense mitochondrion swelling after 
24(25)

 sterol methenyl transferase inhibitor incubation. (D) L. amazonensis pro-

mastigotes forms presenting altered mitochondria with intense swelling and a less electron-dense matrix (arrows), alterations in the mito-

chondrial membranes such as the separation of the inner and outer membranes (arrowheads), and the presence of some concentric membranes 

and myelin figures in the matrix (arrows). (E) Naphthoimidazole (derived from -lapachone) treatment leads to kDNA disorganization, swell-

ing of the mitochondrion (asterisk), a decrease in the electron density of acidocalcisomes (arrowheads) and abnormal chromatin condensation 

(arrow). (F) Epimastigotes treated with edelfosine plus ketoconazole display alterations in the mitochondrion (arrow), plasma membrane 

(arrowheads), and appearance of multinucleated parasites (asterisks). (G) L. amazonensis promastigotes treated with 3 M BPQ-OH for 24 h 

display large vacuole-containing vesicles with a part of the cytoplasm, and some alterations in the Golgi complex (arrowheads). (H) L. ama-

zonensis promastigotes treated with an SQS inhibitor showing the presence of many lipid droplets with distinct morphologies in the cyto-

plasm, a population of lipid bodies surrounded by a monolayer (thick arrows and star), and the presence of increased numbers of electron-

dense inclusions, confirming the alteration in the sterol content. (I) L. amazonensis promastigotes showing several alterations in the flagellar 

membrane (arrowheads) after BPQ-OH treatment. (J) Some epimastigotes treated with the alkaloid piperine display triple k-DNA without 

complete division of the parasite. (L) Suramin treatment results in differentiation of trypomastigotes, which present up to three basal bodies. 

N, nucleus; K, kinetoplast; M, mitochondrion; F, flagellum. Bars: A, C: 6 m; B, D, E: 2 m; F: 0.25 m; G: 0.15 m; H: 0.5 m; J, I: 1 m; 

L: 0.3 m. (A) Courtesy of J.C. Rodrigues; (B) Image reproduced with permission from Ref. [58] © (2009) Elsevier; (C) Courtesy of J.C. 

Rodrigues. (D) Image reproduced with permission from Ref. [40] © (2005) Elsevier; (E) Image reproduced with permission from Ref. [55] © 

(2005) Oxford University Press; (F) Image reproduced with permission from Ref. [51] © (2005) Oxford University Press; (G) Image repro-

duced with permission from Ref. [40] © (2005) Elsevier; (H) Image reproduced with permission from Ref. [41] © (2007) American Society 

for Microbiology; (I) Image reproduced with permission from Ref. [40] © (2005); (J) Image reproduced with permission from Ref. [84] © 

(2008) Springer-Verlag; (L) Image reproduced with permission from Ref. [92] © (2008) Elsevier. 
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 The lysophospholipid analogues (LPAs) edelfosine, 
miltefosine and ilmofosine, in addition to inducing the for-
mation of vesicles and myelin-like figures in the flagellar 
pocket of L. amazonensis promastigotes [50], also induce 
morphological alterations in the reservosomes in epimastig-
otes of T. cruzi, which are characterized by swelling and the 
concentration of several reservosomes near the nucleus [51]. 
Reservosomes are also the main targets of cysteine protease 
antagonists. After incubation of epimastigotes in the pres-
ence of Z-(SBz)Cys-Phe-CHN2, an irreversible cysteine-
protease inhibitor, reservosomes became enlarged and more 
electron-dense [120]. 

 Treatment with -lapachone derivatives, anti-microtubule 
agents, risedronate or propolis induced various alterations in 
reservosome ultrastructure characterized by marked alter-
ations in their morphology and in their electron density, due 
to inhibition of endocytic activity and/or to the increased 
degradation of the protein matrix. The presence of electron-
lucent rod-shaped inclusions was observed [56, 73, 74, 103, 
109, 121].  

 Active plant components also interfere with compart-
ments of the endocytic pathway in trypanosomatids. The 
proanthocyanidin from Kola acuminata caused enlargement 
of the flagellar pocket and of the lysosome-like structures as 
well as the formation of multivesicular bodies in blood-
stream T. brucei [108]. Flagellar pocket swelling was ob-
served in L. chagasi promastigotes treated with Cymbopogon 
citratus essential oil [122]. 

2.8. Acidocalcisomes 

 The acidocalcisome is an acidic electron-dense organelle 
enclosed by a single membrane that is found in all members 
of the Trypanosomatidae family. The number and size of 
acidocalcisomes in a cell varies, and they can be observed in 
all developmental forms of T. cruzi, T. brucei and 
Leishmania. The electron-dense matrix contains sodium, 
magnesium, potassium, calcium, zinc, iron and phosphorous 
in the form of inorganic pyrophosphate and polyphosphate, 
as determined by electron microscopy microanalysis and 
energy–filtered transmission electron microscopy. In addi-
tion to storing the ions listed above, acidocalcisomes are also 
involved in pH homeostasis and osmoregulation. In some 
protozoan parasites (including trypanosomatids), the 
acidocalcisomes present enzymes that are not found or 
different from those found in mammals, such as the vacuolar 
proton translocating pyrophosphatase (V-H

+
-PPase) and a 

soluble inorganic pyrophosphatase (PPase) [123,124]. They 
are inhibited by various bisphosphonate pyrophosphate 
analogues, some of which are commercially available for the 
treatment of bone resorption diseases. 

 Aromatic diamidines, such as furamidine and the other 
fluorescent compounds suramine and chloroquine, were ob-
served to accumulate in the acidocalcisomes of T. brucei [30, 
31, 125]. Naphthoimidazole N1, a -lapachone derivative, 
caused a decrease in the electron density of acidocalcisomes 
in T. cruzi trypomastigotes [55] (Fig. 2E). The most evident 
effect on the ultrastructure of acidocalcisomes was described 
in Leishmania amazonensis after treatment with the SBIs 
ketoconazole and terbinafine. The authors described a 
change in electron density of the cytoplasm, an increase in 

volume and in the number of the organelles, and the pres-
ence of acidocalcisome cores inside large vacuoles present-
ing characteristic autophagic-like structures. This last feature 
was also observed after incubation of Leishmania with the 
SBI 22, 26-azasterol [44]. An increase in acidocalcisome 
volume was also observed after incubation of L chagasi 
promastigotes in the presence of essential oil from C. citra-
tus, Lippia sidoides, and Ocimum gratissimum [122]. 

2.9. Glycosomes 

 Glycosomes are spherical or elongated structures with a 
homogeneous matrix surrounded by a single membrane. 
Most of the glycolytic pathway of trypanosomatids takes 
place in this organelle [126]. Besides glycolytic activity, 
which in trypanosomatids plays an essential role in their 
ATP supply, other metabolic pathways have been described 
to occur in glycosomes, such as isoprenoid and sterol biosyn-
thesis. The enzymes in the glycosomes that participate in the 
different metabolic pathways are structurally and kinetically 
different from those observed in mammalian hosts, making 
the glycosomes a promising target for new drugs against 
parasitic trypanosomatid protozoa. Glycosomes in monox-
enous trypanosomatids also contain catalase and are thus 
considered a special type of peroxisome.  

 Ultrastructural changes in glycosomes have been de-
scribed only after incubation in the presence of the SB in-
hibitor terbinafine, which caused an increase in the number 
of glycosomes in epimastigotes of T. cruzi [37]. The authors 
also observed glycosomes arranged in stacks after 144 h of 
treatment.  

FINAL REMARKS 

 Cell biology studies using electron microscopy have 
made important contributions to the identification of main 
targets for different drugs against trypanosomatids and to 
revealing their effects at the cellular level. New synthetic and 
natural compounds used in nanomolar concentrations and 
combinations of new and old drugs have been successfully 
used. In addition to the most commonly observed effects, 
which are mitochondrial swelling and cytoplasm vacuoliza-
tion, some drugs cause a complex sequence of ultrastructural 
damage, indicating the progression of apoptosis-like and 
autophagic cell death in Leishmania and T. cruzi [127, 128].  
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