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Abstract: One century after the discovery of Chagas disease, the treatment for this illness is still based only on two drugs 

with limited efficacy and severe side effects. In this mini-review, we discuss the application of mass spectrometry (MS)-

based proteomic approaches to study the biochemistry and cell biology of etiologic agent of Chagas disease, Trypanosoma 

cruzi. We focus the discussion in the analysis of subcellular proteomics and posttranslational modifications (PTMs). In re-

cent years, subcellular proteomics has brought new insights into the localization of proteins and possible functions of or-

ganelles. Thus far, proteomic analysis of reservosomes, ribosomes, detergent-solubilized membranes, and a preparation of 

an organelle mixture have been performed. In addition, a number of analyses of PTMs of T. cruzi proteins (i.e., histone 

modifications, phosphorylation, glycosylation, glycosylphosphatidylinositol (GPI)-anchoring, and nitrosylation) have 

been successfully carried out. The identification of those and other PTMs combined with cutting-edge biochemical, im-

munological and cell biology approaches, have allowed a more in-depth understanding of biological and pathophysiologi-

cal processes resulting from host cell-parasite interactions. 
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INTRODUCTION 

 Chagas disease or American trypanosomiasis was dis-
covered one century ago by Carlos Chagas. Chagas disease 
is a major public health concern in Latin America, where 
about 11 million people suffer of this illness and other 120 
million people live in risk areas [1-4]. Of those infected, 
about 50 thousand may die every year due to complications 
in the acute and chronic phases of the disease. Chagas dis-
ease is also becoming an important public health issue in the 
USA and Europe due to migration of chronically infected, 
asymptomatic people from endemic areas [1-4]. This situa-
tion is aggravated due to the dearth of regular screening for 
this disease in blood banks and hospitals [5-7]. 

 Trypanosoma cruzi is the etiologic agent of Chagas dis-
ease and has four different life-cycle stages or forms, two in 
the insect-vector and two in the mammalian host (Fig. 1A). 
In the reduviid insect, popularly known as kissing bug, epi-
mastigotes proliferate in the midgut [8]. Under nutritional 
stress, the epimastigote forms migrate to the distal region of 
the gut and convert into nonproliferative infective forms 
called metacyclic trypomastigotes, which are then released 
with the excreta during the insect bloodmeal (Fig. 1A). 
Metacyclic trypomastigotes are able to enter the host blood-
stream through the bite wound or exposed mucosal tissues, 
and infect a variety of nucleated cells. Inside host cells they 
differentiate into amastigote forms, which reproduce by  
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binary fission and transform into infective trypomastigotes 
(Fig. 1A). These forms are then released from the cells into 
the extracellular milieu to infect surrounding cells, further 
reaching the bloodstream to infect remote tissues or a new 
kissing bug, thus completing the natural life cycle (Fig. 1A) 
[8]. 

 Besides the natural route of transmission, T. cruzi can be 
transmitted by transplantation, blood transfusion, congeni-
tally, and by contaminated foods and fluids [3, 4, 9]. Current 
therapy is based only on two drugs, namely benznidazole 
and nifurtimox. Both of these compounds have limited effi-
cacy and may cause severe side effects [10]. Thus, there is an 
urgent need for developing new, more effective chemothera-
pies. Furthermore, although many efforts have been made in 
the past years, there is no available vaccine for treating or 
preventing Chagas disease [11-13]. We hypothesize that one 
of the hurdles in developing an effective vaccine is that most 
if not all experimental vaccines have been based on a single 
protein or peptide(s) derived thereof. Frequently, there is 
little or no evidence that the target antigen is homogenously 
expressed by infective bloodstream trypomastigotes from 
different strains and lineages that could infect humans. 

 T. cruzi genome is composed by several multigene fami-
lies, such as trans-sialidase (TS)/gp85 glycoproteins, mu-
cins, mucin-associated surface proteins (MASP), retrotrans-
poson hot spot (RHS), and gp63. Each of these families in-
cludes several hundreds of genes, which could be concur-
rently expressed [14, 15]. For developing effective immuno-
therapies, it is crucial to know exactly which and when these 
genes are expressed. To aggravate this already complex 
scenario, T. cruzi has three major lineages (T. cruzi I, II, and 
III) [16, 17], which were recently further reclassified into six 
discrete typing units (DTUs) (i.e., T. cruzi I-VI) [18], each 



168    The Open Parasitology Journal, 2010, Volume 4 Almeida and Nakayasu 

one of them encompassing numerous strains expressing dif-
ferent subsets of genes and having distinct biological and 
pathophysiological traits [17, 18]. Moreover, gene expres-
sion in T. cruzi is polycistronic and the levels of transcript 
usually do not correlate with the amount of protein being 
expressed [19]. Thus, approaches such as microarray and 
cDNA library to map expressed proteins are not consistent. 
In this context, proteomic analysis is the method of choice to 
more reliably determine gene expression in T. cruzi.  

 The two mostly used approaches to perform proteomic 
analysis or proteomics are peptide-mass fingerprint (PMF) 
and liquid chromatography-tandem mass spectrometry (LC-
MS/MS) [20-22] (Fig. 1B). In PMF experiments, protein 
mixtures are separated either by one- (1-DE) or two-
dimensional gel electrophoresis (2-DE), the bands/spots are 
excised, digested with specific endoproteinase (usually tryp-
sin), and the resulting peptides analyzed by matrix-assisted 
laser desorption/ionization-mass spectrometry (MALDI-MS) 
to determine their accurate molecular masses [20-22]. The 
peptide identification is achieved by searching a database of 
known protein sequences, which have been “virtually” (or in 
silico) digested with same protease used experimentally. 
Then, the molecular masses of experimental peptides are 
compared with the theoretical peptide masses, and the results 
statistically analyzed to define the more reliable matches 
(Fig. 1B) [20-22]. In LC-MS/MS experiments, a complex 
mixture of proteins is digested in-solution with a specific 
protease (usually trypsin) and the resulting peptides are 
loaded into a reverse phase (RP) capillary column connected 
to a nanoflow high-performance liquid chromatographer 

(nanoHPLC or nanoLC). The eluting peptides are analyzed 
on-line by electrospray ionization-tandem mass spectrometry 
(ESI-MS/MS), which not only records the molecular masses 
of intact peptides, but also individually select and fragment 
them, generating therefore internal amino acid sequences. 
The identification is done first by searching the database for 
the peptide(s) with same molecular mass. To confirm this 
identification, candidate peptide sequences are submitted to a 
theoretical fragmentation and compared to the experimental 
fragmentation (MS/MS) spectrum (Fig. 1B) [20-22]. Of 
course, depending on the complexity of the sample to be 
analyzed, a combination of chromatographic techniques can 
be used for better resolving peptides prior to the LC-MS/MS 
analysis [23]. For instance, peptides derived from very com-
plex protein mixtures can be fractionated (off-line or on-line) 
by strong cation-exchange (SCX), RP, strong-anion ex-
change (SAX) or hydrophilic interaction (HILIC) chromato-
graphy prior to the LC-MS/MS analysis [23]. Alternatively, 
posttranslationally modified (i.e., phosphorylated, glycosy-
lated, etc.) peptides can be enriched using immobilized anti-
bodies or other types of affinity chromatography, such as 
lectin and immobilized metal-affinity chromatography [24-
27]. 

 In recent years, many efforts have been concentrated in 
the proteomic studies of whole cell lysates for the analysis of 
different T. cruzi developmental stages [28-32], cell differ-
entiation process [33], and drug resistance [34]. Expression 
proteomics of total T. cruzi lysate has been extensively dis-
cussed in a book chapter that is freely available at NCBI 
bookshelf webpage (http://www.ncbi.nlm.nih.gov/bookshelf/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Trypanosoma cruzi life cycle (A) and general proteomic approaches (B). (A) T. cruzi has two stages in the insect vector, epimastig-

otes and metacyclic trypomastigotes, and 2 stages in the mammalian host, amastigotes and bloodstream trypomastigotes. (B) Cell lysates of 

various stages of T. cruzi are analyzed by peptide-mass fingerprint (PMF) or liquid chromatography-tandem mass spectrometry (LC-

MS/MS). In PMF, proteins resolved by 1-DE or 2-DE, are submitted to in-gel digestion and analyzed by matrix assisted laser desorp-

tion/ionization-mass spectrometry (MALDI-MS). In another approach, proteins are digested in solution, and the resulting peptides are frac-

tionated using reverse phase (RP) or strong cation-exchange (SCX) chromatography and analyzed by LC-MS/MS. The identification of the 

proteins is achieved by searching the spectra against a protein sequence database. 

Insect
Stages

Mammalian
Stages 1-DE 2-DE

I l

Life Cycle
A B

Metacyclic
Trypomastigote Amastigote

In-gel
digestion

Peptides

MALDI-TOF-MS

Bloodstream
Trypomastigote

Epimastigote

In-solution
digestion

Peptides

SCX or RP
fractionation

LC-MS/MS Database
Search

Trypomastigote

Protein
identification



Subcellular Proteomics and Global Analysis of Posttranslational The Open Parasitology Journal, 2010, Volume 4    169 

br.fcgi?book=bioinfo&part=B05). Thus, in this mini-review 
we will focus the discussion on proteomics of subcellular 
components and posttranslational modifications (PTMs). 

SUBCELLULAR PROTEOMICS 

 T. cruzi has many subcellular compartments/organelles 
with specialized functions, which are not present in higher 
eukaryotes. Among these organelles/compartments are the 
kinetoplast (a region inside the parasite sole large mitochon-
drion, containing the mitochondrial genome), reservosomes 
(a lysosomal-like organelle exclusively present in epimastig-
ote stage), glycosomes (a peroxisome-like organelle contain-
ing several glycolytic enzymes), and alcidocalcisomes (orga-
nelles involved in the storage of calcium and phosphorus) 
[35, 36]. Other organelles also present in higher eukaryotes 
may be very divergent, thus having different functions. In 
this context, the study of subcellular proteomics is particu-
larly interesting and could provide key information about the 
localization of many proteins and imply biological functions 
and pathways for many parasite organelles.  

 Recently, Ferella et al. [37] obtained a subcellular frac-
tion of epimastigotes enriched mainly with acidocalcisomes 
and glycosomes by ultracentrifugation using an OptiPrep 
gradient. Proteins from this fraction were separated by 1-DE 
and 2-DE, digested with trypsin, and analyzed by LC-
MS/MS (Fig. 2A). This led to the identification of 396 pro-
teins, of which 35% had previously been annotated as hypo-
thetical proteins. Interestingly, one hundred and seventy-
three proteins had not previously been identified in the large-
scale analysis of epimastigote proteome [28]. This improve-
ment in protein coverage might be due to the elimination of 
highly abundant cytoplasmic proteins that interfere in the 
proteomic analysis. Despite of the unquestionable contribu-
tion of the publication by Ferella et al. [37], the lack of a 
better purified preparation precluded the assignment of pro-
teins into a single organelle. This makes the identification of 
new consensus sorting signals that direct proteins into orga-
nelles much more difficult. A prediction analysis using pre-
viously known targeting signals revealed proteins from many 
different organelles in the preparation, including mitochon-
drion, nucleus, flagellum, acidocalcisomes, glycosomes, and 
plasma membrane. Several proteins were also predicted to 
have multiple locations. The authors also validated the 
localization of 5 hypothetical proteins into endoplasmic reti-
culum (ER), mitochondrion, acidocalcisome, and an un-
identified vesicle [37].  

Reservosomal Proteomics 

 Reservosomes are lysosome-related, nutrient storage or-
ganelles which are the final destination of endocytosed pro-
teins and lipids in epimastigote forms of T. cruzi [38, 39]. 
Although reservosomes are not present in other T. cruzi 
stages (i.e., metacyclic trypomastigotes, amastigotes, and 
trypomastigotes), these have similar lysosome-related orga-
nelles but lacking the ability of storing nutrients [39, 40]. For 
the proteomic analysis, reservosomes were obtained by lys-
ing the cells with sonication, and fractionating the organelles 
by ultracentrifugation in a sucrose gradient [41]. A re-
servosomal membrane fraction was also obtained by disrupt-
ing the organelles by sequential freezing and thawing cycles, 
and treating them with sodium carbonate to remove periph-

eral membrane proteins. The purity of the organelle and 
membrane fractions was assessed by transmission electron 
microscopy (TEM). Proteins were then digested with trypsin 
alone or in combination with endoproteinase Glu-C, frac-
tionated by strong cation-exchange (SCX) chromatography, 
and analyzed by LC-MS/MS (Fig. 2B) [41]. A total of 709 T. 
cruzi-specific proteins were identified, being 36% of them 
annotated as hypothetical proteins. In agreement with the 
idea of reservomes being a storage organelle, additional 160 
proteins were identified mainly from the cell culture me-
dium. Interestingly, many proteins related to the function of 
reservosomes such as hydrolases, endosomal/lysosomal pro-
teins, proteins involved in vesicular traffic, and pump and 
channel proteins, were also found [41]. Since reservosome 
can be a recycling organelle, proteins from other compart-
ments could also be there to be degraded. To confirm the 
reservosome preparation was free of significant contamina-
tion with other organelles, the reservosomal proteome was 
compared to subcellular proteomes of glycosomes, mito-
chondrion, and flagellum of T. brucei [41-44]. It was clearly 
shown that most of the highly abundant proteins from those 
preparations were not present in the enriched reservosomal 
fraction, suggesting that the impurities were negligible [41]. 

Ribosomal Proteomics 

 T. cruzi has major differences in transcription mechanism 
as compared to other eukaryotes. First, the genome is orga-
nized in large polycistronic clusters, which are transcribed en 
bloc and processed into individual mRNAs. As a result of 
this processing each mRNA receives at the 5’-end a 39-
nucleotide miniexon or spliced leader (SL) [45, 46]. Since T. 
cruzi has unusual mRNAs, the structure of the ribosomal 
complex could also be different from other eukaryotes. The 
ribosome and its subunits are classified by the coefficient of 
sedimentation, being the complete complex called 80S, and 
the major subunits 60S and 40S [47]. T. cruzi 80S ribosomes 
purified by differential centrifugation and ultracentrifugation 
in sucrose gradient and analyzed by cryo-electron micros-
copy (cryo-EM) showed some differences that could be as-
sociated with the binding of the SL [47, 48]. Purified ribo-
somes were then digested with trypsin and analyzed by 2D-
LC-MS/MS (Fig. 2C). Thirty-two proteins from the 40S ri-
bosomal subunit were found, whereas 47 were identified in 
the 60S subunit [48]. Several proteins were shown to have 
extensions or deletions in either N- or C-terminus, which 
could explain the differences observed in the cryo-EM ex-
periments. Nevertheless, it remains to be determined whether 
these differences are responsible for the binding of the SL. 

Membrane Proteomics 

 Membrane proteins such as channels, transporters, recep-
tors, enzymes, and ligands play key roles in many cellular 
processes. In parasites, surface membrane proteins are of 
great interest since they are in direct contact with host cells 
and the extracellular environment [15, 49]. Furthermore, 
these proteins are frequently implicated in the ability of the 
parasite to invade host cells and escape the host immune 
response; therefore, they have been exploited as potential 
targets for vaccine development [11-13]. Membrane proteins 
are challenging to be analyzed since they are poorly soluble 
in aqueous buffers [50, 51]. In order to compare membrane 
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Fig. (2). Subcellular proteomic studies in T. cruzi. (A) Analysis of multi-organellar proteomics. Organelles were enriched by ultracentrifuga-

tion, and proteins were resolved by 1-DE or 2-DE, submitted to in-gel digestion with proteases and analyzed by LC-MS/MS. (B) Re-

servosomal proteomics. Reservosomes were purified by ultracentrifugation, and proteins submitted to in-solution digestion, fractionated by 

SCX, and analyzed by LC-MS/MS. (C) Ribosomal proteomics. 80S ribosomes were purified by differential ultracentrifugation, and proteins 

digested with trypsin, fractionated by RP chromatography, and analyzed by LC-MS/MS. (D) Membrane proteomics. Epimastigote and meta-

cyclic trypomastigote membrane proteins were obtained by detergent extraction and phase partition. Proteins were then digestion in-solution, 

fractionated by SCX chromatography, and analyzed by LC-MS/MS. 

proteins from insect developmental stages of T. cruzi (i.e., 
epimastigotes vs. metacyclic trypomastigotes), Cordero et al. 
[52] have recently carried out a detergent extraction followed 
by a phase partition. The phase partition is based on the 
property that, depending upon the temperature and concen-
tration, some detergents aggregate, forming two immiscible 
phases, i.e., a detergent-poor and a detergent-rich phase [53]. 
Proteins recovered in the detergent-rich phase were digested 
with trypsin, fractionated by SCX chromatography and ana-
lyzed by LC-MS/MS (Fig. 2D). With this approach 98 meta-
cyclic trypomastigote and 280 epimastigote proteins were 
identified [52]. The proteomic data clearly showed main 
differences between the noninfective/proliferative epimas-
tigote stage and the infective/ nonproliferative metacyclic 
trypomastigote stage. For instance, on the one hand, meta-
cyclic trypomastigotes showed to be highly enriched with 

surface glycosylphosphatidylinositol (GPI)-anchored glyco-
proteins, which are involved in host-cell invasion and eva-
sion from the host immune response. On the other hand, 
epimastigotes showed to be enriched with proteins related to 
metabolic pathways, which support the fast proliferation of 
this parasite stage [52]. Interestingly, a large proportion 
(~50%) of the detergent-soluble epimastigote proteins was 
also identified in the reservosomal membrane fraction [41, 
52]. 

POSTTRANSLATIONAL MODIFICATIONS 

 Currently, more the 300 PTMs are known to modify pro-
teins in a physiological environment [26, 27]. PTMs have 
been shown to regulate many biological processes, such as, 
enzymatic activity, cellular localization of proteins, transport 
of molecules, binding to protein complexes, cell signaling, 
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and interaction with other cells/organisms. Considering their 
importance, PTMs are still poorly studied in T. cruzi. Lately, 
comprehensive analyses of some PTMs have been providing 
new insights into key biological processes of T. cruzi and the 
role of parasite posttranslationally modified proteins in the 
pathogenesis Chagas disease. Large-scale analyses of histone 
modifications, protein phosphorylation, GPI-anchoring, gly-
cosylation, and nitrosylation have been carried out, and the 
main findings of these studies are discussed below. 

Histone Modifications 

 Histones are proteins that pack DNA into nucleosomes 
and play critical roles in the chromatin structure and epigen-
etic gene expression in higher eukaryotes [54, 55]. These 
proteins have high content of basic amino acid residues, 
which helps binding to the negative charge of nucleic acids. 
Among all known proteins, histones probably contain the 
largest number of PTMs, which include acetylation, methyl-
ation, phosphorylation, ubiquitination, SUMOylation, and 
ADP-ribosylation. These modifications play key roles con-
trolling chromatin assembly and gene transcription rates [55, 
56].  

 Unfortunately, T. cruzi histone sequences are divergent 
from those of higher eukaryotes, thus commercially available 
antibodies raised against specific modification sites may not 
properly recognize the parasite homologues. As a conse-
quence, mapping PTMs of histones is a crucial step for 
studying epigenetics and histone roles in T. cruzi. However, 
the analysis of histone PTMs by MS-based proteomics is one 
of the most challenging tasks for the following reasons: (i) 
histones are rich in lysine and arginine residues; thus, tryp-
sin, the most used enzyme to digest proteins in proteomic 
analysis, may provide too short peptides to be sequenced; (ii) 
a high number of possible PTMs and potential modification 
sites; and (iii) the difference between a trimethylated and an 
acetylated lysine residue is only 36 mDa, thus requiring very 
high-resolution MS analysis, which is not always readily 
available. 

 The first T. cruzi histone to be analyzed was the H1 [57]. 
The MS analysis of the intact protein suggested that it could 
be phosphorylated and had a series of methylations and/or 
acetylations. To study these potential PTMs in detail, puri-
fied histone H1 was digested with trypsin and analyzed by 
LC-MS/MS (Fig. 3A), resulting in the mapping of one acety-
lation at the N-terminus and one phosphorylation at serine 12 
[57]. Interestingly, this phosphorylation was enriched in non-
proliferative/infective bloodstream trypomastigotes as com-
pared to proliferative/non-infective epimastigotes [58]. This 
modification was also shown to be regulated according to the 
cell cycle possibly by a cyclin-dependent kinase-related en-
zyme (TzCRK3 or TzCRK1) [57]. Furthermore, antibodies 
raised specifically against the phosphorylated form of H1 
enabled the study of its dynamics during the cell cycle [59]. 

 The other T. cruzi histone to be analyzed was the H4 
[60]. Using radiolabeled precursors, histone H4 was shown 
to be mainly acetylated and to a lesser extent, methylated. 
Since histone H4 has high content of lysine and arginine, it 
would generate too short peptides when treated with trypsin, 
thus da Cunha et al. [60] chose to digest the samples with 
either endoproteinase Glu-C or Arg-C. Resulting peptides 

were analyzed by MALDI-TOF/TOF-MS and LC-MS/MS 
and the resulting data suggested that histone H4 has many 
isoforms with different numbers of methylations and/or ac-
etylations (Fig. 3A) [60]. To unambiguously distinguish be-
tween trimethylated and acetylated lysine residues, the sam-
ples were not only run in high mass accuracy instruments 
(i.e., MALDI-TOF/TOF-MS and ESI-QTOF-MS), but also 
the identification relied upon the presence of diagnostic im-
monium ions for each modification. With this approach, 
methylation at the N-terminus, lysine acetylation at positions 
4, 10, 14, and 57, monomethylation at lysine 18, and di-
methylation at arginine 53 were mapped [60]. By using anti-
bodies raised against specific lysine acetylation positions, it 
was shown that histone modified at each position has a dif-
ferential distribution in the nucleus [61]. Also, it was sug-
gested that these modifications may play key roles in cell 
cycle, differentiation, and DNA repair mechanisms [61].  

 More recently, Respuela et al. [62] used antibodies raised 
against Tetrahymena acetylated histones, which have their 
lysine residues conversed as compared to the T. cruzi ones. 
These authors showed that acetylated and methylated his-
tones are enriched in proximity to polycistronic clusters, 
suggesting that these modifications could be regulating tran-
scription levels [62]. 

Phosphorylation 

 Protein phosphorylation is a ubiquitous PTM that regu-

lates many cellular pathways. This modification occurs more 

frequently in the side chain of serine, threonine, and tyrosine 

residues in eukaryotes, but also can be found in histidine and 

aspartic acid residues mostly in prokaryotes. Although pro-

tein phosphorylation is perhaps the most investigated PTM, 

it is poorly explored in protozoan parasites and other patho-

genic microorganisms. Since phosphorylation has already 

been targeted for the treatment of several illnesses, including 

central nervous system disorders and many types of cancer 

[63-65], it is predictable that it might be a very promising 

target for the development of chemotherapies against Chagas 

disease and other diseases caused by protozoan parasites [66, 
67].  

 The T. cruzi kinome (the complete set of kinases) in-

cludes 190 genes that possibly code for kinases, of which 

12% are atypical as compared to those found in higher eu-

karyotes [67, 68]. On the other hand, T. cruzi has 86 phos-

phatase genes, being 40% atypical. Interestingly, the parasite 

lacks typical tyrosine kinase genes [69]. To identify the 

phosphoproteins and map the modified sites, Nakayasu et al. 

[70] performed a large-scale phosphoproteomic analysis of 

T. cruzi epimastigotes. The whole cell lysate was digested 

with trypsin, then phosphopeptides were enriched using im-

mobilized metal-affinity chromatography (IMAC) and ana-

lyzed by LC-MS/MS (Fig. 3B). This analysis resulted in the 

identification of 220 phosphorylation sites (148 on serine, 57 

on threonine, and 8 on tyrosine residues) in 119 distinct pro-

teins [70]. Remarkably, approximately 4% of the phosphory-

lation sites were found in tyrosine residues, despite the ab-

sence of typical tyrosine kinases [70]. This proportion was 

similar to that found recently in T. brucei [71, 72]. It has 

been proposed that kinases with dual specificity, such as 

Wee kinase, could be phosphorylating tyrosine residues 
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[67,68]. However, experimental data is still necessary to 
confirm this hypothesis.  

Glycosylphosphatidylinositol (GPI) Anchoring 

 Glycosylphosphatidylinositol (GPI) anchoring was first 
described in Trypanosoma brucei variant surface glycopro-
tein (VSG) and rat erythrocyte Thy-1 protein [73, 74]. This 
is a ubiquitous posttranslational modification that attaches 
proteins into the cell surface and it is present in most known 
eukaryotes [75]. The basic structure of a GPI anchor consists 
of a lipid tail, which can be either a phosphatidylinositol (PI) 
or an inositolphosphorylceramide (IPC), and a glycan core, 
usually composed of three sequential mannose (Man) resi-
dues and a glucosamine (GlcN). The latter is linked to the 
myo-inositol residue of the lipid moiety (Man3-GlcN-PI or -
IPC). The protein is attached to the GPI through an etha-
nolamine phosphate (EtNP) group present in the third man-
nose distal from GlcN residue. The GPI anchor can be fur-
ther modified with the addition of extra carbohydrate resi-
dues, EtNP, aminoethylphosphonate (AEP) on the glycan 
core, and fatty acid on the inositol ring [75]. GPIs can be 
also expressed in the protein-free forms, known as gly-
coinositolphospholipids (GIPLs), or linked to complex poly-
saccharide, as in the case of the Leishmania lipophosphogly-
can (LPG) .  

 All protein sequences destined to receive a GPI-anchor 
have two conserved regions: i) a signal peptide at N-
terminus that drives the nascent protein into the ER; and ii) a 
hydrophobic C-terminal region known as the GPI-attachment 
signal peptide that docks the protein in the ER membrane. 
Once the protein is fully matured, the GPI-attachment signal 
peptide is cleaved and the GPI anchor is transferred en bloc 
to the newly formed C-terminus by an enzymatic complex 
called transamidase [76,77]. With the information of the C-
terminal region and the amino acid residues surrounding the 
modification (omega, ) site, it is possible to predict poten-
tial GPI-anchored proteins with high accuracy [78]. For in-
stance, it has been estimated that approximately 12% of the 
whole T. cruzi genome code for GPI-anchored proteins [79]. 
This number is much higher as compared to other related 
trypanosomatids, such as T. brucei [79] and Leishmania ma-
jor [78], which have 1.5% and 1.0% of the protein sequences 
predicted to be GPI-anchored, respectively. In T. cruzi, the 
potential GPI-anchored sequences are concentrated into large 
multigene families (some of which with more than 1,000 
genes) such as mucin-associated surface protein (MASP), 
mucin (comprising TcMUC I, TcMUC II, TcMUC III, 
TcSMUG S and TcSMUG L families), TS/gp85 glycopro-
tein, amastin, surface protease gp63, mucin-like protein, and 
TolT [79]. This large number of genes coding for putative 
GPI-anchored proteins could reflect in the expression of a 
highly complex surface coat of glycoconjugates, which could 
be explored by the parasite to effectively invade a vast array 
of cells and escape immune response within the mammalian 
host [15, 49], or to resist proteolytic enzymes within the in-
sect-vector [79]. 

 To identify the major surface GPI-anchored proteins on 
infective trypomastigote forms, Buscaglia et al. [80] per-
formed a sequential solvent extraction and purification of 
these glycoconjugates by hydrophobic-interaction chromato-
graphy (HIC), followed by digestion with trypsin, and ESI-

MS/MS analysis. Using this approach, it was possible to 
sequence a short peptide attached to the GPI anchor and 
identify the protein sequence. The authors showed that the 
major surface GPI-anchored proteins of trypomastigotes be-
long to the highly diverse TcMUC II mucin family, which is 
encoded by hundreds of genes [14,80]. Interestingly, 
TcMUC II mucins and their isolated GPI anchors were pre-
viously shown to be strong proinflammatory molecules that 
activate Toll-like receptor 2 (TLR2)-mediated pathways, 
leading to production of cytokines (e.g., IL-12, TNF- ), 
chemokines, and nitric oxide (NO) [15,81]. Other GPI-
anchored proteins, such as TS/gp85 and gp63 glycoproteins, 
were shown to be important during host-cell invasion and to 
protect the parasite against the host immune response. Fur-
thermore, there are other major protein families predicted to 
be GPI-anchored (e.g., MASP, mucin-like, TolT) but with 
very little information about their expression and function 
[14,15,82]. Therefore, the in-depth analysis of major GPI-
anchored proteins will certainly provide new interesting in-
sights into their relevance for the parasite biology and patho-
genesis of Chagas disease. 

 Recent advances in technology made possible to analyze 

not only the most abundant GPI species but also to obtain a 

global view of the most comprehensive set of expressed 

GPIs, i.e., the GPIome. Until recently, one of the major hur-

dles for the analysis of the GPIome of T. cruzi was the dearth 

of a high-resolution chromatographic method for the purifi-

cation of GPIs and GPI-anchored proteins (GPI-APs). Our 

hypothesis was that this setback was a result of the amphi-

philic character of RP and HIC resins, which would interact 

with both hydrophilic (glycan) and hydrophobic (lipid) moi-

eties of the GPI, thus considerably decreasing the resolving 

power of the separation. To solve this problem, we have 

introduced the use of C4-linked polystyrenedivinylbenzene 

(POROS R1) resin, which is exclusively hydrophobic and 

hence eliminates any eventual hydrophilic interactions. This 

methodology was first used for the global GPIomic analysis 

of epimastigote forms of T. cruzi [79]. Epimastigote-derived 

GIPLs and GPI-anchored proteins were extracted with or-

ganic solvents, and GPIs attached to proteins were further 

released by digestion with trypsin or proteinase K, and ana-

lyzed by LC-MS/MS (Fig. 3C). Seventy-eight GIPL species 

were identified, of which 70 had not previously been de-

scribed yet. Among the protein-linked GPIs, 12 distinct spe-

cies were characterized, being 9 of them completely novel. 

Only one GPI-AP was sequenced and shown to belong to the 

TcSMUG S mucin family [79]. Interestingly, this family of 

mucins is highly glycosylated and short in length, with ma-

ture proteins predicted to have 56-85 amino acid residues. 

Also, TcSMUG S mucin sequences contain a central domain 

of threonine-rich repeats and very few trypsin sites located at 

the N- and C-termini, which would likely make these pro-

teins somewhat resistant to trypsin and other proteolytic en-

zymes [15,49]. Together, the GPIomic data raises the possi-

bility that the epimastigote highly diverse coat, rich in GIPLs 

and highly glycosylated, short GPI-APs could be involved in 

the protection of the parasite against digestive enzymes 

found in the reduviid midgut [79]. In addition, GIPLs were 

shown to be involved in the attachment of epimastigotes to 
the midgut epithelium of the insect vector [83]. 
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Fig. (3). Analysis of posttranslational modifications (PTMs) of T. cruzi proteins. (A) Histone PTMs. Histones were extracted with acid solu-

tions, separated by RP or cation exchange (CX) high-performance liquid chromatography (HPLC), submitted to in-solution digestion, and 

analyzed by MALDI-TOF-TOF/MS or LC-MS/MS. (B) T. cruzi phosphoproteome. Whole cell lysate was digested with trypsin and fraction-

ated by SCX chromatography. Phosphopeptides were enriched using immobilized metal-affinity chromatography (IMAC), and analyzed by 

LC-MS/MS. (C) T. cruzi GPIomics. Epimastigote GIPLs and GPI-anchored proteins (GPI-Prot) were extracted with organic solvents. GPI-

Prot were digested with proteolytic enzymes, and both GPI-anchored peptides (GPI-Pep) and GIPLs were purified in POROS R1 columns, 

and analyzed by LC-MS/MS. (D) N-linked glycoproteome. Cells were lysed and separated into organellar and cytoplasmic/plasma membrane 

fractions. The proteins were digested and glycopeptides were enriched by lectin chromatography. Glycopeptides were treated with PNGase F 

in buffer prepared with 
18

O water and analyzed by LC-MS/MS. (E) Analysis of nitrosylated serum proteins from T. cruzi-infected animals. 

Serum from infected animals were separated by 1-DE and 2-DE and submitted to Western blot using anti-3-nitrotyrosine antibodies. The 

reactive bands/spots were digested with proteases and analyzed by MALDI-MS or LC-MS/MS. 
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 Finally, the GPIomics technology opens new avenues for 
the large-scale investigation of GIPLs and GPI-APs not only 
from distinct T. cruzi stages, strains and lineages, but also 
from other medically relevant protozoan parasites, such as T. 
brucei, Plasmodium spp., Leishmania spp. and Toxoplasma 
gondii.  

Glycosylation 

 T. cruzi has mainly 3 types of glycosylation: N-, O-, and 
phospho (P)-glycosylation [84,85] . Another common glyco-
sylation type found in eukaryotes, the O-linked N-
acetylglucosamine (or O-GlcNAcylation), was proposed to 
be absent in Trypanosoma spp., since these parasites lack the 
gene coding the O-linked N-acetylglucosaminyltransferase 
(OGT) enzyme, responsible for the transfer of -GlcNAc to 
threonine or serine residue [86] . T. cruzi has 52 putative 
glycosyltransferase genes coding for enzymes that transfer 
nucleotide sugars. In addition, about 1,400 sequences of TS 
members are present in the genome [14]. This high number 
of glycosyltransferases is responsible for the synthesis of a 
variety of glycoconjugates, which are abundantly and differ-
entially expressed in all T. cruzi stages. Many glycans and 
glycoconjugates are known to play key roles in the interac-
tion of parasite with both insect and mammalian hosts [87].  

 Here, we will focus the discussion on protein glycosyla-
tion sites rather than the glycans themselves, since an excel-
lent review was recently published about the latter topic [87]. 
In other to map N-linked glycosylation sites in trypomastig-
ote proteins, Atwood et al. [88] used a sophisticated meth-
odology. First, cells were lysed and separated into organellar 
and plasma membrane/cytosolic fractions. Both fractions 
were then submitted to trypsin digestion and glycopeptides 
were captured by lectin affinity chromatography using im-
mobilized concanavalin A. The N-linked glycans were re-
leased with peptide-N-glycosidase F (PNGase F) in a buffer 
prepared with H2

18
O [88] (Fig. 3D). In this procedure, the 

modified asparagine residue is converted into aspartic acid, 
with the incorporation one 

18
O atom, promoting a shift of 3 

Da as compared to the unmodified asparagine residue [89]. 
This shift of 3 Da is easily detected in the mass spectrometer, 
providing more confidence during the N-glycosylated site 
mapping. With this approach, thirty-six glycosylation sites 
were mapped on 29 glycoproteins, including several TS, 
MASP, and dispersed gene family protein 1 (DGF-1) [88].  

 O-linked mucin-type glycosylation is abundantly found 
in surface GPI-anchored mucins [15,49,90]. O-glycosylation 
is particularly relevant for the elicitation of the protective 
(trypanolytic) humoral immune response conferred by anti-

-galactosyl (anti- -Gal) antibodies, found in high levels 
(~300 g/ml serum) in both acute and chronic stages of Cha-
gas disease [91-94]. Although there are several reports and 
reviews [15,49,90] regarding the structure of these O-linked 
glycans, there is no information about the modification sites, 
although they are predicted to be localized in threonine-rich 
regions.  

 Finally, P-glycosylation is another unique type of glyco-
sylation reported to be present in T. cruzi. Phosphoglycans 
were initially isolated by mild acid hydrolysis of glycopep-
tides purified from a metacyclic trypomastigote lysate after 
pronase treatment followed by affinity chromatography 

using the monoclonal antibody WIC29.26, which is highly 
reactive to the Gp72 glycoprotein [85, 95]. These P-glycans 
were generally found linked to threonine and to a less extent, 
serine residues, through a Xyl-1-PO4 reducing terminus. The 
function of Gp72 remains elusive, but this glycoprotein 
seems to be involved in complement activation, maintenance 
of parasite morphology, and flagellar adhesion [96]. More 
recently, P-glycosylation was also found in oligomannosides 
of the NETNES glycoconjugate, a GPI-anchored glycopep-
tide containing two P-glycans linked to serine and threonine 
residues through a Man-1-PO4 reducing terminus [97]. The 
biological function of NETNES, however, remains to be 
determined. 

Protein Nitrosylation 

 Oxidative stress is part of a proinflammatory response 
against T. cruzi infection [98]. During this process, reactive 
oxygen and nitrogen species are produced and may cause 
protein carbonylation and nitrosylation, respectively. During 
an infection, inducible nitric oxide synthase (iNOS) is over-
expressed, resulting in the production high amounts of NO. 
NO in the presence of oxygen radicals is converted into per-
oxynitrite, which nitrosylates tyrosine and cysteine residues 
[98]. Recently, Dhiman et al. [99] investigated the presence 
of 3-nitrotyrosine (3NT) in proteins from plasma of acutely 
and chronically infected mice. Plasma from these animals 
were depleted from serum albumin, separated in 1-DE or 2-
DE and submitted to Western blot assay using anti-3NT 
antibodies (Fig. 3E). Fifty-six positive spots for 3NT were 
analyzed by MALDI-MS and LC-MS/MS, leading to the 
identification of 50 of them, including IgG, IgA, serum al-
bumin, fibrinogen, and apolipoprotein A-I [99]. Furthermore, 
protein-3NT was recently shown to be a reliable indicator of 
inflammation in patients with Chagas disease [100]. Whether 
3NT-modified proteins have their function(s) somehow af-
fected is a question that still needs to be addressed. 

CONCLUDING REMARKS 

 Advances in proteomic technologies have been having a 
great impact in the fields of biology and biomedical sciences. 
The application of this technology to T. cruzi-derived sam-
ples has been helping to build not only a catalog of ex-
pressed proteins in different parasite stages but also allowing 
the characterization of proteins from specific organelles 
and/or with different PTMs. The analysis of subcellular pro-
teomics and PTMs combined with biochemical, immuno-
logical and cell biology approaches is accelerating the dis-
covery of new biological functions of a considerable number 
of T. cruzi molecules. Still, the major challenge remains the 
preparation of highly enriched organelles and fractions of 
posttranslationally modified proteins for proteomic analysis. 
We believe the in-depth proteomic studies of distinct stages, 
lineages, and strains of T. cruzi will further the development 
of new, more effective therapeutic interventions against this 
deadly parasite. 

ABBREVIATIONS 

1-DE = one-dimensional gel electrophoresis 

2-DE = two-dimensional gel electrophoresis 

AEP = aminoethylphosphonate 
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cryo-EM = cryo-electron microscopy 

DGF-1 = dispersed gene family protein 1 

ER = endoplasmic reticulum 

ESI-MS/MS = electrospray ionization-tandem mass 
spectrometry 

ESI-QTOF-MS = electrospray ionization quadrupole-
time-of-flight mass spectrometry 

EtNP = ethanolaminephosphate 

GIPL = glycoinositolphospholipid 

GPI = glycosylphosphatidylinositol 

HILIC = hydrophilic-interaction chromatogra-
phy 

IMAC = immobilized metal-affinity chromato-
graphy 

iNOS = inducible nitric oxide synthase 

LC-MS/MS = liquid chromatography-tandem mass 
spectrometry 

LPG = lipophosphoglycan 

MALDI-MS = matrix-assisted laser desorption/ioniza-
tion-mass spectrometry 

MALDI-TOF/ = matrix-assisted laser desorption/ioniza- 
TOF-MS   tion-tandem time-of-flight mass spec-

trometry 

MASP = mucin-associated surface protein 

nanoHPLC or = nanoflow high-performance liquid  
nanoLC   chromatography 

NO = nitric oxide 

PMF = peptide mass fingerprint 

PNGase F = peptide-N-glycosidase F 

PTM = protein posttranslational modification 

RP = reverse phase 

RHS = retrotransposon hot spot 

SAX = strong-anion exchange 

SCX = strong cation-exchange 

SL = spliced leader 

TLR2 = Toll-like receptor 2 

TLR6 = Toll-like receptor 6 

TS = trans-sialidase 
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